Plasma and Fusion Research

Volume 16, 1402089 (2021)

Regular Articles


On Collapses in Strong Reversed Shear Plasmas During or Just After Plasma Current Ramp-Up in JT-60U
Takahiro BANDO, Hiroshi TOJO, Manabu TAKECHI, Nobuyuki AIBA, Takuma WAKATSUKI, Maiko YOSHIDA, Shizuo INOUE and Go MATSUNAGA
National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan
(Received 19 March 2021 / Accepted 25 May 2021 / Published 5 July 2021)

Abstract

The advanced tokamak (AT) scenario with the strong reversed magnetic shear is an attractive candidate of the steady state tokamak because the strong internal transport barrier leads to the high bootstrap current fraction, resulting in the reduction of the cost of the fusion reactor. In this paper, the causes of the collapses during or just after plasma current ramp-up of the experimental campaign of the AT scenario [Y. Sakamoto et al., Nucl. Fusion 49, 095017 (2009)] in 2007 and 2008 are investigated and the initial results are reported. As the observations are consistent with characteristics of the stability on the resistive wall mode (RWM) and the results of MARG2D code, the RWM is suggested as the candidate of the cause of the collapses in the analyzed AT scenario.


Keywords

advanced tokamak scenario, strong reversed magnetic shear, collapse, resistive wall mode, JT-60U, tokamak

DOI: 10.1585/pfr.16.1402089


References

  • [1] R.J. Goldston, Phys. Plasmas 3, 1794 (1996).
  • [2] M. Kikuchi and M. Azumi, Rev. Mod. Phys. 84, 1807 (2012).
  • [3] T. Liu et al., Nucl. Fusion 59, 065009 (2017).
  • [4] J.M. Hanson et al., Nucl. Fusion 57, 056009 (2017).
  • [5] Y. Shen et al., Nucl. Fusion 60, 124001 (2020).
  • [6] J. Huang et al., Nucl. Fusion 60, 126007 (2020).
  • [7] Y. Sakamoto et al., Nucl. Fusion 47, 1506 (2007).
  • [8] Y. Sakamoto et al., Nucl. Fusion 49, 095017 (2009).
  • [9] S. Takeji et al., Nucl. Fusion 42, 5 (2002).
  • [10] M. Takechi et al., Nucl. Fusion 45, 1694 (2005).
  • [11] M. Takechi et al., the 32nd EPS Conference on Plasma Physics (Spain, 27 June - 1 July 2005) P2.049.
  • [12] K. Ida and T. Fujita, Plasma Phys. Control. Fusion 60, 033001 (2018).
  • [13] M.S. Chu and M. Okabayashi, Plasma Phys. Control. Fusion 52, 123001 (2010).
  • [14] N. Oyama and the JT-60 Team, Nucl. Fusion 49, 104007 (2009).
  • [15] G.L. Jackson et al., Nucl. Fusion 48, 125002 (2008).
  • [16] N. Aiba et al., Comput. Phys. Commun. 175, 269 (2006).
  • [17] T. Suzuki et al., Rev. Sci. Instrum. 79, 10F533 (2008).
  • [18] M. Azumi, G. Kurita, T. Matsuura, T. Takeda, Y. Tanaka and T. Tsunematsu, Proc. of the 4th Int. Symp. on Computational Methods in Applied Science and Engineering (Paris, 1980) p.335.
  • [19] M. Yoshida et al., Fusion Eng. Des. 84, 2206 (2009).
  • [20] T.H. Stix, Phys. Fluids 16, 1260 (1973).
  • [21] M. Takechi et al., Phys. Rev. Lett. 98, 055002 (2007).
  • [22] N. Aiba et al., Comput. Phys. Commun. 180, 1282 (2009).