Plasma and Fusion Research
Volume 16, 1402039 (2021)
Regular Articles
- 1)
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
- 2)
- Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
- 3)
- The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
Abstract
Characteristics of the new vertical neutron camera (VNC3) installed for the study of energetic-particle transport in the relatively low neutron emission rate (Sn) in Large Helical Device (LHD) deuterium plasma is investigated. Dependence of signal of VNC3 operating with the current mode on Sn shows that accurate neutron signal is obtained using VNC3 in low Sn range with 10 ms time bin where the error of neutron counts of first vertical neutron camera (VNC1) operating with the pulse counting mode is significantly large. Time-resolved measurements of neutron emission profiles in deuterium beam heated low Sn plasmas are performed. Although the line-integrated neutron obtained by VNC3 is wider due to its larger inner diameter of the collimator compared to VNC1, the neutron profile measured by VNC3 is almost matched with the neutron profile measured by VNC1. The time-resolved neutron profile measurement in low Sn discharge with relatively short time period becomes possible using VNC3.
Keywords
LHD, vertical neutron camera, neutron emission profile, energetic particle
Full Text
References
- [1] A. Fasoli et al., Nucl. Fusion 47, S264 (2007).
- [2] O.N. Jarvis, Plasma Phys. Control. Fusion 36, 209 (1994).
- [3] A.L. Roquemore et al., Rev. Sci. Instrum. 61, 3163 (1990).
- [4] A.L. Roquemore et al., Rev. Sci. Instrum. 68, 544 (1997).
- [5] J.M. Adams et al., Nucl. Instrum. Methods Phys. A 329, 277 (1993).
- [6] O.N. Jarvis et al., Fusion Eng. Des. 34-35, 59 (1997).
- [7] M. Ishikawa et al., Rev. Sci. Instrum. 73, 4237 (2002).
- [8] M. Ishikawa et al., Rev. Sci. Instrum. 77, 10E706 (2006).
- [9] F.B. Marcus et al., Rev. Sci. Instrum. 68, 514 (1997).
- [10] D. Marocco et al., J. Instrum. 7, C03033 (2012).
- [11] M. Isobe et al., IEEE Trans. Plasma Sci. 46, 2050 (2018).
- [12] K. Ogawa et al., Nucl. Fusion 59, 076017 (2019).
- [13] M. Isobe et al., Nucl. Fusion 58, 082004 (2018).
- [14] K. Ogawa et al., Plasma Fusion Res. 16, 1102023 (2021).
- [15] M. Osakabe et al., Fusion Sci. Technol. 72, 199 (2017).
- [16] K. Ogawa et al., Rev. Sci. Instrum. 85, 11E110 (2014).
- [17] K. Ogawa et al., Rev. Sci. Instrum. 89, 113509 (2018).
- [18] H. Kawase et al., Plasma Fusion Res. 13, 3402122 (2018).
- [19] K. Ogawa et al., submitted to Plasma Phys. Control. Fusion.
- [20] K. Ogawa et al., Nucl. Fusion 58, 044001 (2018).
- [21] K. Ogawa et al., Plasma Phys. Control. Fusion 60, 044005 (2018).
- [22] K. Ogawa et al., Nucl. Fusion 60, 112011 (2020).
- [23] S. Sangaroon et al., Rev. Sci. Instrum. 91, 083505 (2020).
- [24] M. Isobe et al., J. Plasma Fusion Res. SERIES 8, 330 (2009).
- [25] H11934-100-10MOD, Hamamatsu Photonics K.K. (https://www.hamamatsu.com/resources/pdf/etd/R11265U_H11934_TPMH1336E.pdf).
- [26] APV8102-14MWPSAGb, Techno AP Corp. (http://www.technoap.com/img/APV8102_14MWPSAGb.pdf).
- [27] T. Nishitani et al., Fusion Eng. Des. 123, 1020 (2017).
- [28] EJ-410 scintillator (https://eljentechnology.com/products/neutron-detectors/ej-410).
- [29] H7195, Hamamatsu Photonics K.K. (https://www.hamamatsu.com/resources/pdf/etd/High_energy_PMT_TPMZ0003E.pdf).
- [30] C7319, Hamamatsu Photonics K.K. (https://s1.dtsheet.com/store/data/000749671.pdf?key=2f4cb749296cb6e8895ac79f7a1c378a&r=1).
- [31] PXI6133, National Instruments (https://www.ni.com/pdf/manuals/371231d.pdf).
- [32] M. Isobe et al., Rev. Sci. Instrum. 85, 11E114 (2014).
- [33] D. Ito et al., Plasma Fusion Res. 16, 1405018 (2021).