Plasma and Fusion Research

Volume 16, 1302106 (2021)

Letters


Investigation of Light Transmission Efficiency in ITER Hard X-Ray Monitor
Shin KAJITA, Santosh P. PANDYA1), Richard O'CONNOR2), Robin BARNSLEY2) and Huxford ROGER3)
Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
1)
Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar - 382428, India
2)
ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
3)
RBH Optics, Burgess Hill, England, United Kingdom
(Received 16 September 2021 / Accepted 31 October 2021 / Published 10 December 2021)

Abstract

A Hard X-ray monitor (HXRM) diagnostic system is being designed for ITER tokamak and will be utilized to detect runaway electrons for the safe operation of the tokamak. Runaway electrons produce X-ray photons by means of thick target and/or thin target bremsstrahlung emission process. In this diagnostic measurement system, the X-ray photons interact with scintillator detector volume and generate secondary UV-photons by luminescence. These UV-photons from the scintillator-crystal guided through the optics and detected by photomultiplier tubes. The light collection efficiency from the scintillator-crystals and light transmission efficiency of the optics determines the detectable energy range of X-rays and energy resolution. In this letter, we perform ray-tracing simulations of the luminescence to optical fiber bundle to assess light collection efficiency from the scintillator-crystal and show the effect on the total light coupling efficiency of the system.


Keywords

ITER, hard X-ray monitor, scintillator, ray tracing, runaway electron

DOI: 10.1585/pfr.16.1302106


References

  • [1] A. Shevelev, V. Kiptily, I. Chugunov, E. Khilkevitch, D. Gin, D. Doinikov, V. Naidenov, V. Plyusnin and E.-J. contributors, AIP Conf. Proc. 1612, 125 (2014).
  • [2] A.M. Fernandes et al., IEEE Trans. Nucl. Sci. 61, 1209 (2014).
  • [3] S.P. Pandya, L. Core, R. Barnsley, J. Rosato, R. Reichle, M. Lehnen, L. Bertalot and M. Walsh, Physica Scripta 93, 115601 (2018).
  • [4] J. Sinha, P.C. de Vries, L. Zabeo, E. Veshchev, S.P. Pandya, A. Sirinelli, A. Pironti, G. Vayakis, R.A. Pitts, S.D. Pinches, Y. Gribov and X. Bonnin, Plasma Phys. Control. Fusion 63, 084002 (2021).
  • [5] S.P. Pandya, Ph.D. thesis “Development and performance assessment of ITER Diagnostics for Runaway Electrons based on predictive modelling” (Aix-Marseille Univ., 2019) 2019AIXM0036.
  • [6] S. Kajita, E. Veshchev, S. Lisgo, R. Reichle, R. Barnsley, M. Walsh, A. Alekseev, A. Gorshkov, D. Vukolov, J. Stuber and S. Woodruff, Plasma Phys. Control. Fusion 55, 085020 (2013).
  • [7] S. Kajita, G. Passedat and R. Reichle, Fusion Eng. Des. 160, 111787 (2020).
  • [8] N. Yawai, K. Wantong, W. Chewpraditkul, R. Murakami, T. Horiai, S. Kurosawa, A. Yoshikawa and M. Nikl, Nucl. Instrum. Methods in Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 844, 129 (2017).
  • [9] E. Hecht, Optics, 4th edition (Addison-Wesley, Reading, Mass, 2002).
  • [10] A. Patel, S.P. Pandya, A.E. Shevelev, E.M. Khilkevitch and M. Iliasova, “Reconstruction of runaway electron energy distribution function in tokamak discharges using Hard X-ray spectrometry”, Research Report (RR)-1314, Library Institute for Plasma Research, Gandhinagar, India, November-2021.