Plasma and Fusion Research

Volume 16, 1206001 (2021)

Rapid Communications


Tungsten Large-Scale Fiberform Nanostructures Retained under High Temperature Conditions
Tatsuki OKUYAMA, Shin KAJITA1), Naoaki YOSHIDA2), Hirohiko TANAKA, Tatsuya KUWABARA and Noriyasu OHNO
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
1)
IMaSS, Nagoya University, Nagoya 464-8603, Japan
2)
RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
(Received 24 November 2020 / Accepted 8 December 2020 / Published 12 January 2021)

Abstract

Large-scale fiberform nanostructures (LFN) are formed on the tungsten (W) surface with He-W codeposition environments. In this study, we conducted annealing experiments at 1473 - 1673 K for 30 min using an infrared heating furnace. It was found that the LFN retained their structures after annealing at 1673 K. Through detailed observations using an optical microscope, a scanning electron microscope (SEM), and a transmission electron microscope (TEM), the morphological changes are discussed in relation to the high-temperature stability.


Keywords

He-W co-deposition, fuzz, tungsten, annealing, LFN

DOI: 10.1585/pfr.16.1206001


References

  • [1] S. Takamura et al., Plasma Fusion Res. 1, 051 (2006).
  • [2] M.J. Baldwin et al., Nucl. Fusion 48, 035001 (2008).
  • [3] S. Kajita et al., Nucl. Fusion 49, 095005 (2009).
  • [4] M. Yajima et al., J. Nucl. Mater. 438, S1142 (2013).
  • [5] S. Kajita et al., Appl. Phys. Express 3, 085204 (2010).
  • [6] S. Kajita et al., J. Appl. Phys. 113, 134301 (2013).
  • [7] K. Ibano et al., Jpn. J. Appl. Phys. 57, 040316 (2018).
  • [8] M.J. Baldwin et al., J. Nucl. Mater. 404, 165 (2010).
  • [9] S. Kajita et al., J. Nucl. Mater. 421, 22 (2012).
  • [10] M. Yajima et al., J. Nucl. Mater. 449, 9 (2014).
  • [11] C.S. Wang et al., Nucl. Mater. Ener. 22, 100730 (2020).
  • [12] S. Kajita et al., Sci. Rep. 56, 8 (2018).
  • [13] S. Kajita et al., Nucl. Fusion 58, 106002 (2018).
  • [14] S. Kajita et al., Nucl. Mater. Ener. 18, 339 (2019).
  • [15] S. Kajita et al., Acta Mater. 181, 342 (2019).
  • [16] M. Yajima et al., Plasma Fusion Res. 11, 1206125 (2016).
  • [17] S. Kawaguchi, Master Thesis, Nagoya Univ. (2017).
  • [18] N. Horiuchi, Nature Photonics 14, 66 (2020).