Plasma and Fusion Research
Volume 16, 1206001 (2021)
Rapid Communications
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- 1)
- IMaSS, Nagoya University, Nagoya 464-8603, Japan
- 2)
- RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
Abstract
Large-scale fiberform nanostructures (LFN) are formed on the tungsten (W) surface with He-W codeposition environments. In this study, we conducted annealing experiments at 1473 - 1673 K for 30 min using an infrared heating furnace. It was found that the LFN retained their structures after annealing at 1673 K. Through detailed observations using an optical microscope, a scanning electron microscope (SEM), and a transmission electron microscope (TEM), the morphological changes are discussed in relation to the high-temperature stability.
Keywords
He-W co-deposition, fuzz, tungsten, annealing, LFN
Full Text
References
- [1] S. Takamura et al., Plasma Fusion Res. 1, 051 (2006).
- [2] M.J. Baldwin et al., Nucl. Fusion 48, 035001 (2008).
- [3] S. Kajita et al., Nucl. Fusion 49, 095005 (2009).
- [4] M. Yajima et al., J. Nucl. Mater. 438, S1142 (2013).
- [5] S. Kajita et al., Appl. Phys. Express 3, 085204 (2010).
- [6] S. Kajita et al., J. Appl. Phys. 113, 134301 (2013).
- [7] K. Ibano et al., Jpn. J. Appl. Phys. 57, 040316 (2018).
- [8] M.J. Baldwin et al., J. Nucl. Mater. 404, 165 (2010).
- [9] S. Kajita et al., J. Nucl. Mater. 421, 22 (2012).
- [10] M. Yajima et al., J. Nucl. Mater. 449, 9 (2014).
- [11] C.S. Wang et al., Nucl. Mater. Ener. 22, 100730 (2020).
- [12] S. Kajita et al., Sci. Rep. 56, 8 (2018).
- [13] S. Kajita et al., Nucl. Fusion 58, 106002 (2018).
- [14] S. Kajita et al., Nucl. Mater. Ener. 18, 339 (2019).
- [15] S. Kajita et al., Acta Mater. 181, 342 (2019).
- [16] M. Yajima et al., Plasma Fusion Res. 11, 1206125 (2016).
- [17] S. Kawaguchi, Master Thesis, Nagoya Univ. (2017).
- [18] N. Horiuchi, Nature Photonics 14, 66 (2020).