Plasma and Fusion Research

Volume 15, 2405016 (2020)

Regular Articles


Hydrogen Permeation in Fusion Materials and the Development of Tritium Permeation Barriers
Anne HOUBEN, Marcin RASINSKI and Christian LINSMEIER
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany
(Received 29 November 2019 / Accepted 16 February 2020 / Published 6 April 2020)

Abstract

Fuel retention and hydrogen permeation in the first wall of future fusion devices are crucial factors. Due to safety issues and in order to guarantee an economical reactor operation, tritium accumulation into reactor walls and permeation through walls have to be estimated and prevented. Therefore, studies of permeation in the fusion materials are performed and the need for tritium permeation barriers (TPB) is verified. The development of TPB layers is explained. A reliable way of comparing different TPB layers and the estimation of the permeation reduction effect of a TPB layer on different bulk materials is enabled by calculation of the layer permeability.


Keywords

gas-driven hydrogen permeation measurement, tritium permeation barrier, yttrium oxide, reduced activation ferritic martensitic steel, 316L(N)-IG steel

DOI: 10.1585/pfr.15.2405016


References

  • [1] F. Waelbroeck, I. Ali-Khan, K. Dietz and P. Wienhold, J. Nucl. Mater. 85, 345 (1979).
  • [2] I. Ali-Khan, K. Dietz, F. Waelbroeck and P. Wienhold, J. Nucl. Mater. 76, 337 (1978).
  • [3] Ch. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Mller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S. Wurster, J.-H. You and Z. Zhou, Nucl. Fusion 57, 092007 (2017).
  • [4] R. Causey, R. Karnesky and C.S. Marchi, in Comprehensive Nuclear Materials, edited by R.J. Konings (Elsevier, Oxford, 2012) pp.511-549.
  • [5] J. Engels, A. Houben, M. Rasinski and Ch. Linsmeier, Fusion Eng. Des. 124, 1140 (2017).
  • [6] A. Houben, J. Engels, M. Rasinski and Ch. Linsmeier, Nucl. Mater. Energy 19, 55 (2019).
  • [7] D. Demange, L. Boccaccini, F. Franza, A. Santucci, S. Tosti and R. Wagner, Fusion Eng. Des. 89, 1219 (2014).
  • [8] K. Forcey, D. Ross and C. Wu, J. Nucl. Mater. 182, 36 (1991).
  • [9] A. Perujo and K. Forcey, Fusion Eng. Des. 28, 252 (1995), proceedings of the Third International Symposium on Fusion Nuclear Technology.
  • [10] G. Hollenberg, E. Simonen, G. Kalinin and A. Terlain, Fusion Eng. Des. 28, 190 (1995), proceedings of the Third International Symposium on Fusion Nuclear Technology.
  • [11] E. Serra, H. Glasbrenner and A. Perujo, Fusion Eng. Des. 41, 149 (1998).
  • [12] D. Levchuk, F. Koch, H. Maier and H. Bolt, Physica Scripta 2004, 119 (2004).
  • [13] J. Engels, A. Houben, P. Hansen, M. Rasinski and Ch. Linsmeier, Int. J. Hydrogen Energy 43, 22976 (2018).
  • [14] R.A. Forrest, A. Tabasso, C Danani, S Jakhar and A.K. Shaw, UKAEA FUS 552 (2009): http://www.ccfe.ac.uk/assets/documents/ukaea-fus-552_0.pdf.