Plasma and Fusion Research

Volume 15, 2403033 (2020)

Regular Articles


Numerical Study of Supersonic Molecular Beam Injection System in Thailand Tokamak I
Jiraporn PROMPING, Apiwat WISITSORASAK1,2), Boonyarit CHATTHONG3,4) and Kewalee NILGUMHANG
Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
1)
Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
2)
Center of Excellence in Theoretical and Computational Science, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
3)
Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
4)
CompAnIS-BSC Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
(Received 29 November 2019 / Accepted 2 April 2020 / Published 8 June 2020)

Abstract

Thailand Institute of Nuclear Technology (TINT) is planning to develop Thailand Tokamak I from HT-6M tokamak. In the first phase of operation, the device will be equipped with two fueling systems: gas puffing (GP) and supersonic molecular beam injection (SMBI). Since the SMBI system has never been used experimentally with this device, this work, therefore, numerically studies the penetration features of SMBI in the plasma of Thailand Tokamak I, based on the nominal parameters of HT-6M tokamak. The interaction of the supersonic molecules with the plasma has been computed by BOUT++ code which solves six-field fluid model of SMBI model in the radial direction. The preliminary results demonstrate that the SMBI is an efficient method for fueling the plasma and the beam can be delivered to the center of the plasma core.


Keywords

tokamak, fueling system, SMBI, BOUT++

DOI: 10.1585/pfr.15.2403033


References

  • [1] HT-6M Team, Fusion Technol. 9, 476 (1986).
  • [2] J. Promping, S. Sangaroon, A. Wisitsorasak et al., Plasma Fusion Res. 13, 3403094 (2018).
  • [3] S. Sajjad, X. Gao, B. Ling et al., Phys. Lett. A 373, 1133 (2009).
  • [4] S.J. Zweben, D.P. Stotler, R.E. Bell et al., Plasma Phys. Control. Fusion 56, 095010 (2014).
  • [5] D.L. Yu, C.Y. Chen, L.H. Yao et al., Nucl. Fusion 50, 035009 (2010).
  • [6] L.R. Baylor, Nucl. Fusion 32, 2177 (1992).
  • [7] W.A. Houlberg, S.E. Attenberger, L.R. Baylor et al., Nucl. Fusion 32, 1951 (1992).
  • [8] L.R. Baylor, T.C. Jernigan, C.J. Lasnier et al., J. Nucl. Mater. 266-269, 457 (1999).
  • [9] L. Yao, N. Tang, Z. Cui et al., Nucl. Fusion 38, 631 (1998).
  • [10] Z.H. Wang, X.Q. Xu, T.Y. Xia et al., Nucl. Fusion 54, 043019 (2014).
  • [11] S. Hong-Juan, D. Xuan-Tong, Y. Liang-Hua et al., Plasma Phys. Control. Fusion 52, 045003 (2010).
  • [12] W.W. Xiao, P.H. Diamond, W.C. Kim et al., Nucl. Fusion 54, 023003 (2014).
  • [13] Y. Lianghua and J. Baldzuhn, Plasma Sci. Technol. 5, 1933 (2003).
  • [14] H. Takenaga, J. Nucl. Mater. 390-391, 869 (2009).
  • [15] X. Zheng, J. Li, J. Hu et al., Plasma Phys. Control. Fusion 55, 115010 (2013).
  • [16] Y.-H. Wang, W.-F. Guo, Z.-H. Wang et al., Chinese Phys. B 25, 106601 (2016).
  • [17] Y.-L. Zhou, Z.-H. Wang, M. Xu et al., Chinese Phys. B 25, 095201 (2016).
  • [18] B.D. Dudson, M.V. Umansky, X.Q. Xu et al., Comput. Phys. Commun. 180, 1467 (2009).
  • [19] J. Promping, A. Wisitsorasak, B. Chatthong et al., Plasma Fusion Res. 14, 3403154 (2019).
  • [20] G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, 202 (1996).