Plasma and Fusion Research

Volume 15, 2401029 (2020)

Regular Articles


Development of Cs-Free Negative-Ion Source by Sheet Plasma
Keito HANAI, Toshikio TAKIMOTO, Hiroki KAMINAGA, Akira TONEGAWA, Kohnosuke SATO1) and Kazutaka KAWAMURA
Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
1)
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
(Received 7 January 2020 / Accepted 17 March 2020 / Published 13 May 2020)

Abstract

The use of cesium leads complicates ion source operation and requires regular maintenance for continuous operation. The development of a negative-ion source without Cs seeding is desired in neutral beam injectors. A magnetized-sheet plasma producing negative ions using volume production without Cs seeding was designed. The experiment was performed by a TPDsheet-U and tested using steady-state hydrogen plasma. Two different types of grid structures were used in the experiment to extract the negative-ion beam: single- and multi-aperture grids. The multi-aperture grids have been developed to achieve more beam current. The negative hydrogen ions were successfully extracted from the sheet plasma using both single- and multi-aperture grids. The current densities of the ion beams increased with increasing discharge current and extraction voltage. At an extraction voltage of 9.5 kV and a discharge current of 80 A, the approximate current density of the negative hydrogen ion beam was 8.4 mA/cm2 for the case of single-aperture grids. At an extraction voltage of 9.5 kV and a discharge current of 50 A, the approximate current density of the negative hydrogen ion beam was 23 mA for the case of multi-aperture grids.


Keywords

neutral beam heating, negative-ion source, volume production, Cs-free, sheet plasma, TPD-type plasma source

DOI: 10.1585/pfr.15.2401029


References

  • [1] U. Fantz et al., Nucl. Fusion 49, 125007 (2009).
  • [2] U. Fantz et al., Nucl. Fusion 57, 116007 (2017).
  • [3] U. Fantz et al., Chem. Phys. 398, 7 (2012).
  • [4] B. Heinemann et al., AIP Conf. Proc. 1655, 060003 (2015).
  • [5] B. Heinemann, D. Wünderlich, W. Kraus, F. Bonomo, U. Fantz, M. Fröschle, I. Mario, R. Riedl and C. Wimmer, Fusion Eng. Des. 146, 455 (2019).
  • [6] D. Wünderlich et al., Nucl. Fusion 59, 084001 (2019).
  • [7] P. Agostinetti et al., Nucl. Fusion 56, 016015 (2016).
  • [8] U. Kurutz et al., Plasma Phys. Control. Fusion 59, 075008 (2017).
  • [9] J. Uramoto, AIP Conf. Proc. 158, 319 (1987).
  • [10] V.R. Noguera, G.Q. Blantocas and H.J. Ramos, Nucl. Instrum. Methods B 266, 2627 (2008).
  • [11] M. Otsuka, K. Tkayama, A. Tanaka, J. Uramoto, S. Aihara, T. Kodama, K. Ishii and Y. Tanaka, Proceedings of the 7th International Conference on Phenomena in Ionized Gases, 420-423 (1966).
  • [12] K. Sunako, K. Nanri, E. Yabe and K. Takayama, Nucl. Instrum. Methods, Phys. Res. Section B 111, 151 (1996).
  • [13] A. Tonegawa, M. Ono, Y. Morihira, H. Ogawa, T. Shibuya, K. Kawamura and K. Takayama, J. Nucl. Mater. 313-316, 1046 (2003).
  • [14] R. Endo, S. Ishihara, T. Takimoto, A. Tonegawa, K. Sato and K. Kawamura, AIP Conf. Proc. 020009 (2018).
  • [15] S. Ishihara, T. Takimoto, R. Endo, A. Tonegawa, K. Sato and K. Kawamura, AIP Conf. Proc. 050015 (2018).
  • [16] A. Tonegawa, K. Kumita, M. Ono, T. Shibuya and K. Kawamura, Jpn. J. Appl. Phys. 45, 8212 (2006).
  • [17] T. Iijima, S. Hagiwara, S. Tanaka, A. Tonegawa, K. Kawamura and K. Sato, Fusion Sci. Technol. 63, 417 (2013).
  • [18] T. Iijima, H. Kobayashi, S. Tanaka, A. Tonegawa, K. Kawamura and K. Sato, Plasma Fusion Res. 9, 2405010 (2014).
  • [19] K. Hanai, S. Ishihara, R. Endo, T. Takimoto, A. Tonegawa and K. Sato, Fusion Eng. Des. 146, 2721 (2019).