Plasma and Fusion Research

Volume 15, 1403080 (2020)

Regular Articles


Modification of the DD Neutron Emission Spectrum at the 2.4 - 2.5 MeV Energy Range in Neutral-Beam-Injection-Heated Plasma and Its Application to Fuel Ion Ratio Diagnostics
Tomoki URAKAWA and Hideaki MATSUURA
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
(Received 17 June 2020 / Accepted 13 September 2020 / Published 29 October 2020)

Abstract

In neutral-beam-injection (NBI)-heated plasma, the emission spectra of the neutrons produced by D(d,n)3He and T(d,n)α fusion reactions are known to be distorted from Gaussian distribution functions in both the high and low energy sides along the NBI direction. This study shows that the effect of NBI heating can be applied to the central energy region, i.e., the 2.4 - 2.5 MeV range in the D(d,n)3He neutron emission spectrum. Conventionally, the intense spectrum anisotropy appears via the anisotropy in the double-differential D(d,n)3He cross-section. Herein, we have shown the anisotropy in the neutron emission spectrum of the central energy range (2.4 - 2.5 MeV) due to the alteration of the neutron emission spectrum (2.4 - 2.5 MeV). Caused by the modification of the deuteron velocity distribution function is large enough to negate the anisotropy caused by the double-differential D(d,n)3He cross-section. An application of the anisotropy effect to fuel-ion ratio diagnostics is discussed, and the attendant degree of improvement is evaluated.


Keywords

double differential neutron emission spectrum, anisotropic neutron emission, fuel ion ratio diagnostic

DOI: 10.1585/pfr.15.1403080


References

  • [1] J.G. Cordey and M.J. Houghton, Nucl. Fusion 13, 215 (1973).
  • [2] T.H. Stix, Nucl. Fusion 15, 737 (1975).
  • [3] M. Yamagiwa, T. Takizuka and Y. Kishimoto, Nucl. Fusion 27, 1773 (1987).
  • [4] M. Nocente, G. Gorini, J. Källne and M. Tardocchi, Nucl. Fusion 51, 063011 (2011).
  • [5] Ya.I. Kolesnichenko, Nucl. Fusion 20, 727 (1980).
  • [6] H. Matsuura and Y. Nakao, Phys. Plasmas 13, 062507 (2006).
  • [7] H. Matsuura and Y. Nakao, Phys. Plasmas 16, 042507 (2009).
  • [8] L. Ballabio, G. Gorini and J. Källne, Phys. Rev. E 55, 3358 (1997).
  • [9] J. Källne et al., Phys. Rev. Let. 85, 1246 (2000).
  • [10] C. Hellesen et al., Nucl. Fusion 50, 022001 (2010).
  • [11] C. Hellesen et al., Rev. Sci. Instrum. 85, 11D825 (2014).
  • [12] H. Matsuura and Y. Nakao, J. Plasma Fusion Res. SERIES 9, 48 (2010).
  • [13] M. Drosg and O. Schwerer, Production of monoenergetic neutrons between 0.1 and 23 MeV: neutron energies and cross-sections, Handbook of Nuclear Activation Data (Vienna: IAEA) STI/DOC/10/273, ISBN 92-0-135087-2 (1987).
  • [14] T. Nishitani et al., IEEE Trans. Plasma Sci. 47, 12 (2018).
  • [15] S. Sugiyama et al., Nucl. Fusion 60, 076017 (2020).
  • [16] H. Matsuura et al., IEEE Trans. Plasma Sci. 46, 2301 (2018).
  • [17] S. Sugiyama et al., Phys. Plasmas 24, 092517 (2017).
  • [18] J. Källne, P. Batistoni and G. Gorini, Rev. Sci. Instrum. 62, 2781 (1991).
  • [19] G. Ericsson et al., Rev. Sci. Instrum. 81, 10D324 (2010).
  • [20] J. Källne et al., Rev. Sci. Instrum. 68, 581 (1997).
  • [21] K. Okada et al., 32nd EPS Conference on Plasma Phys. Tarragona, 27 June - 1 July 2005 ECA Vol.29C, P-4.096 (2005).
  • [22] Y. Kawamoto and H. Matsuura, J. Plasma Fusion Res. 11, 2405078 (2016).
  • [23] J.D. Gaffey, Jr., J. Plasma Phys. 16, 149 (1976).
  • [24] H. Brysk, Plasma Phys. 15, 611 (1973).
  • [25] M.E. Swan et al., Proceedings of the 22nd IEEE / NPSSS symposium on Fusion Engineering, Albuquerque, HM. June 17-21, 1 (2007).
  • [26] Y. Nagaya, K. Okumura, T. Mori and M. Nakagawa, JAERI 1348 (2005).
  • [27] K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011).