Plasma and Fusion Research

Volume 15, 1403052 (2020)

Regular Articles


Simulation of Co-Existence of Ballooning and Kink Instabilities in PLATO Tokamak Plasma
Shuhei TOMIMATSU1), Naohiro KASUYA1,2), Masahiko SATO3), Atsushi FUKUYAMA4), Masatoshi YAGI5), Yoshihiko NAGASHIMA1,2) and Akihide FUJISAWA1,2)
1)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2)
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
3)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
4)
Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
5)
National Institute for Quantum and Radiological Science and Technology, Obuchi, Rokkasho-mura, Aomori 039-3212, Japan
(Received 13 February 2020 / Accepted 2 June 2020 / Published 15 July 2020)

Abstract

Magneto-hydro-dynamics (MHD) simulations are carried out for the first time with PLATO tokamak parameters to represent competition of plasma instabilities. The plasma equilibrium is evaluated with the vertical coil configuration in PLATO by using free boundary equilibrium code. The equilibrium is introduced from TASK/EQ to MHD simulations by MIPS code to calculate nonlinear saturation dynamics. In the simulation, a ballooning mode and kink mode both become unstable. We present the dependencies on plasma parameters to identify the instabilities. The ballooning and kink modes become unstable in the steep gradient region and at the safety factor q = 1 surface near the center of the plasma, respectively, so the nonlinear flattening of the pressure profile near the center is stronger in the kink case. The interaction between the modes affects the evolution of instabilities.


Keywords

ballooning mode, kink mode, PLATO tokamak, nonlinear dynamics, flattening process

DOI: 10.1585/pfr.15.1403052


References

  • [1] A.M. Dimits et al., Phys. Rev. Lett. 77, 1 (1996).
  • [2] R.J. Fonck et al., Phys. Rev. Lett. 70, 24 (1993).
  • [3] K.L. Wong et al., Phys. Rev. Lett. 85, 5 (2000).
  • [4] Y. Liang, Phys. Rev. Lett. 98, 265004 (2007).
  • [5] P.B. Synder et al., Phys. Plasmas 9, 2037 (2002).
  • [6] A. Ishizawa et al., Plasma Phys. Control. Fusion 61, 054006 (2019).
  • [7] A. Fujisawa, AIP Conf. Proc. 1993, 020011 (2018).
  • [8] http://bpsi.nucleng.kyoto-u.ac.jp/task/
  • [9] K. Matsuoka, Reports RIAM, Kyushu Univ. 141, 51 (2011).
  • [10] Y. Todo et al., Plasma Fusion Res. 5, S2062 (2010).
  • [11] J.P. Freidberg, Ideal MHD (Cambridge University Press, 2007).
  • [12] J. Wesson, Tokamaks (Oxford University Press, 2011).
  • [13] M.N. Rosenbluth, R.Y. Dagazian and P.H. Rutherford, Phys. Fluids 16, 1894 (1973).
  • [14] A. Ishizawa et al., Phys. Plasmas 14, 040702 (2007).
  • [15] M. Yagi et al., Plasma Fusion Res. 2, 025 (2007).