Plasma and Fusion Research

Volume 15, 1402074 (2020)

Regular Articles


Study of the Transient Behavior of Detached Plasma during Xe Gas Injection into the D-Module of GAMMA 10/PDX
Md. Shahinul ISLAM, Yousuke NAKASHIMA1), Takaaki IIJIMA1), Kunpei NOJIRI1), Naomichi EZUMI1), Masayuki YOSHIKAWA1), Tsuyoshi KARIYA1), Ryutaro MINAMI1), Mafumi HIRATA1), Kazuo HOSHINO2), Akiyoshi HATAYAMA2), Hiroki HASEGAWA, Seiji ISHIGURO, Hiroto MATSUURA3) and Mizuki SAKAMOTO1)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
1)
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
2)
Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan
3)
Radiation Research Center, Osaka Prefecture University, Osaka 599-8570, Japan
(Received 12 July 2020 / Accepted 6 September 2020 / Published 12 October 2020)

Abstract

The transition phenomenon of detached plasma during additional heating effects has been studied by applying a short pulse (25 ms) of Electron Cyclotron Heating (ECH) at the east plug-cell of the tandem mirror device GAMMA 10/PDX. In this paper, the plasma parameters on the target plate of the D-module are studied for understanding the impact of transient heating pulse on the sustainability of the detached plasma. The heat flux increases on the target plate for the additional heating case in comparison to without heating pulse. The ion flux also increases when the ECH heating is activated. The electron density enhances significantly during the ECH heating pulse application period. Furthermore, the electron density and the ion flux increase according to the increment of Xe plenum pressure in the case of ECH heating condition. The experimental results clarified that ECH heating pulse can drive the detachment state to attached state in spite of strong effect of Xe gas for generating the detached plasma.


Keywords

GAMMA 10/PDX, D-module, heat flux, ion flux, electron density, detached to attached transition

DOI: 10.1585/pfr.15.1402074


References

  • [1] P.C. Stangeby, Plasma Phys. Control. Fusion 43, 223 (2000).
  • [2] A. Loarte et al., Nucl. Fusion 47, S203 (2007).
  • [3] A. Kallenbach et al., Plasma Phys. Control. Fusion 58, 045013 (2016).
  • [4] S. Takamura et al., J. Plasma Fusion Res. 4, 138 (2001).
  • [5] N. Ohno, Plasma Phys. Control. Fusion 59, 034007 (2017).
  • [6] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [7] Y. Nakashima et al., Nucl. Mater. Energy 18, 216 (2019).
  • [8] N. Ezumi et al., Nucl. Fusion 59, 066030 (2019).
  • [9] M.S. Islam et al., Plasma Fusion Res. 11, 2402042 (2016).
  • [10] M.S. Islam et al., Plasma Fusion Res. 14, 2402016 (2019).
  • [11] M.S. Islam et al., Nucl. Mater. Energy 18, 182 (2019).
  • [12] M.S. Islam et al., Plasma Phys. Control. Fusion 59, 125010 (2017).
  • [13] M.S. Islam et al., Plasma Phys. Control. Fusion 61, 125005 (2019).
  • [14] M.S. Islam et al., Plasma Fusion Res. 13, 3403080 (2018).
  • [15] M.S. Islam et al., Contrib. Plasma Phys. 58, 805 (2018).
  • [16] M.S. Islam et al., Fusion Eng. Des. 125, 216 (2017).
  • [17] T. Yokoyama et al., Plasma Fusion Res. 7, 2402136 (2012).
  • [18] Y. Yamaguchi et al., Plasma Phys. Control. Fusion 48, 1155 (2006).
  • [19] M. Hirata et al., Plasma Fusion Res. 14, 2402055 (2019).
  • [20] K. Kurihara et al., J. Phys. Soc. Jpn 58, 3453 (1989).
  • [21] R. Minami et al., Plasma Fusion Res. 14, 2402034 (2019).
  • [22] J. Kohagura et al., Fusion Sci. Technol. 63, 176 (2013).
  • [23] M. Iwamoto et al., Plasma Fusion Res. 9, 3402121 (2014).