Plasma and Fusion Research

Volume 15, 1401084 (2020)

Regular Articles


Structure of the Electron Distribution Function and Induced Beam Instability in Collisionless Magnetic Reconnection with a Strong Guide Field
Kazuya SHIMOMURA, Tomohiko WATANABE, Shinya MAEYAMA and Akihiro ISHIZAWA1)
Department of Physics, Nagoya University, Nagoya 464-8602, Japan
1)
Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan
(Received 15 June 2020 / Accepted 25 September 2020 / Published 19 November 2020)

Abstract

A phase space structure of the electron distribution function is investigated by the gyrokinetic theory and numerical simulations to investigate a possible mechanism of the excitation of the beam instability which induces collisionless magnetic reconnection in a strong guide field. It is shown that the perturbed electron distribution function develops in proportion to the shifted Maxwellian distribution as the reconnection electric field accelerates electrons along the guide field at the X-point, with parity symmetry around the z- axis. The accelerated electrons are expected to excite the kinetic Alfvén waves (KAWs) when the beam velocity exceeds the Alfvén speed. The obtained results suggest a possible scenario for anomalous resistivity generation in the case with the strong guide field where the beam electrons accelerated at the X-point lose their parallel momentum through interactions with the self-excited KAWs.


Keywords

magnetic reconnection, gyrokinetic simulation, kinetic Alfvén wave, beam instability, anomalous instability, collisionless reconnection

DOI: 10.1585/pfr.15.1401084


References

  • [1] D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge Univ., Cambridge, 2000) p.49.
  • [2] E. Priest, Magnetic Reconnection MHD Theory and Applications (Cambridge Univ., Cambridge, 2009) C.5.
  • [3] R.C. Davidson, N.T. Gladd, C.S. Wu and J.D. Huda, Phys. Fluids 20, 301 (1977).
  • [4] E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli and A. Saluzzi, Phys. Rev. Lett. 80, 20 (1998).
  • [5] M. Otaviani and F. Porcelli, Phys. Rev. Lett. 71, 23 (1993).
  • [6] M. Hesse, K. Schindler, J. Birn and M. Kuznetsova, Phys. Plasmas 6, 1781 (1999).
  • [7] J. Birn, J.F. Drake, M.A. Shay, B.N. Rogars, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto and P.L. Pritchett, J. Geophys. Res. 106, 3715 (2001).
  • [8] B.N. Rogers, R.E. Denton, J.F. Drake and M.A. Shay, Phys. Rev. Lett. 87, 195004 (2001).
  • [9] T.A. Carter, H. Ji, F. Trinchouk, M. Yamada and R.M. Kulsrud, Phys. Rev. Lett. 88, 015001 (2001).
  • [10] J.P. Eastwood, M.A. Shay, T.D. Phan et al., Phys. Rev. Lett. 104, 205001 (2010).
  • [11] Y.-H. Liu, W. Daughton, H. Li and S.P. Gary, Phys. Plasmas 21, 022113 (2014).
  • [12] M. Hirota, Y. Hattori and P.J. Morrison, Phys. Plasmas 22, 052114 (2015).
  • [13] R. Horiuchi and T. Sato, Phys. Plasmas 6, 12 (1999).
  • [14] T. Moritaka, R. Horiuchi and H. Otani, Phys. Plasmas 14, 102109 (2007).
  • [15] R.B. Torbert, J.L. Burch, B.L. Giles, D. Gershman, C.J. Pollock, J. Dorelli, L. Avanov, M.R. Argall, J. Shuster, R.J. Strangeway, C.T. Russel et al., Geophys. Res. Lett. 43, 5918 (2016).
  • [16] H. Che, Phys. Plasmas 24, 082115 (2017).
  • [17] T.S. Hahm, W.W. Lee and A. Brizard, Phys. Fluids 31, 1940 (1988).
  • [18] X. Garbet, Y. Idomura, L. Villard and T.H. Watanabe, Nucl. Fusion 50, 043002 (2010).
  • [19] M.J. Pueschel, F. Jenko, D. Told et al., Phys. Plasmas 18, 112102 (2011).
  • [20] A. Ishizawa and T.-H.Watanabe, Phys. Plasmas 20, 102116 (2013).
  • [21] R. Numata and N.F. Loureiro, Phys. Plasmas 81, 305810201 (2015).
  • [22] A. Hasegawa, J. Geophys. Res. 81, 5093 (1976).
  • [23] M. Hirota, J. Plasma Fusion. Res. 92, 12 (2016).
  • [24] A. Ishizawa, S. Maeyama, T.-H.Watanabe and H. Sugama, J. Plasma Phys. 81, 43510203 (2015).