Plasma and Fusion Research
Volume 15, 1401065 (2020)
Regular Articles
- Kobe University, Kobe 657-8501, Japan
- 1)
- National Institute for Fusion Science, Toki 509-5292, Japan
- 2)
- University of Hyogo, Kobe 650-0047, Japan
Abstract
We propose a new visualization method for large-scale computer simulations called “4D Street View”. This method uses omnidirectional in-situ visualization cameras to record a simulation from multiple viewpoints. The omnidirectional video dataset produced by the simulation is then analyzed interactively. In this paper, we apply the method to a magnetohydrodynamics turbulence simulation with 64 viewpoints to prove that it is possible to achieve interactive in-situ visualization for supercomputer simulations. Three types of in-situ visualization by omnidirectional cameras (with 4π steradian solid angle) from each viewpoint are applied. At the end of the simulation, a video dataset with 192 omnidirectional video files is produced. We demonstrate that we can change the viewing position, angle, and applied visualization method interactively using a specially designed application program.
Keywords
computer simulation, scientific visualization, in-situ visualization, MHD simulation
Full Text
References
- [1] K.L. Ma, C. Wang, H. Yu and A. Tikhonova, “In-situ processing and visualization for ultrascale simulations,” J. Phys.: Conference Series 78, no. 1, 1 (2007).
- [2] R.B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu and K. Moreland, “Visualization and parallel I/O at extreme scale,” J. Phys.: Conference Series 125, 012099 (jul 2008).
- [3] K.-L. Ma, “In Situ Visualization at Extreme Scale: Challenges and Opportunities,” IEEE Comput. Graph. Appl. 29, Issue 6, 14 (2009).
- [4] H. Childs, K.-L. Ma, H. Yu, B. Whitlock, J. Meredith, J. Favre, S. Klasky and N. Podhorszki, “In Situ Processing,” in High Performance Visualization: Enabling Extreme Scale Scientific Insight (E.W. Betherl, H. Childs, and C. Hansen, eds.), ch. 9, pp. 171-198 (Chapman and Hall, 2012).
- [5] U. Ayachit, A. Bauer, B. Geveci, P. O'Leary, K. Moreland, N. Fabian and J. Mauldin, “ParaView Catalyst: Enabling In Situ Data Analysis and Visualization,” Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - ISAV2015, pp. 25-29 (2015).
- [6] B. Whitlock, J.M. Favre and J.S. Meredith, “Parallel in situ coupling of simulation with a fully featured visualization system,” Eurographics Symposium on Parallel Graphics and Visualization, pp. 101-109 (2011).
- [7] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J.Y. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu and W. Yu, “Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks,” Concurrency and Computation: Practice and Experience, 26, 1453 (may 2014).
- [8] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie and E.W. Bethel, “The SENSEI generic in situ interface,” Proceedings of ISAV 2016: 2nd Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 40-44 (2017).
- [9] A. Tikhonova, C.D. Correa and M. Kwan-Liu, “Explorable images for visualizing volume data,” IEEE Pacific Visualization Symposium 2010, PacificVis 2010 - Proceedings, vol. D, no. VIDi, pp. 177-184 (2010).
- [10] N. Sakamoto, J. Nonaka, K. Koyamada and S. Tanaka, “Particle-based volume rendering,” in 6th International Asia-Pacific Symposium on Visualization, pp. 129-132, IEEE (feb 2007).
- [11] T. Kawamura, T. Noda and Y. Idomura, “In-situ visual exploration of multivariate volume data based on particle based volume rendering,” Proceedings of ISAV 2016: 2nd Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis, vol. D, pp. 18-22 (2017).
- [12] A. Kageyama and T. Yamada, “An approach to exascale visualization: Interactive viewing of in-situ visualization,” Comput. Phys. Commun. 185, 79 (jan 2014).
- [13] A. Puri, X. Chen and A. Luthra, “Video coding using the H.264/MPEG-4 AVC compression standard,” Signal Processing: Image Communication, vol. 19, pp. 793-849 (oct 2004).
- [14] J. Ahrens, S. Jourdain, P. O'Leary, J. Patchett, D.H. Rogers and M. Petersen, “An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis,” International Conference for High Performance Computing, Networking, Storage and Analysis, SC, vol. 2015-Janua, no. January, pp. 424-434 (2014).
- [15] P. O'Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D.H. Rogers and M. Petersen, “Cinema image-based in situ analysis and visualization of MPAS-ocean simulations,” Parallel Computing 55, 43 (2016).
- [16] D. Banesh, J.A. Schoonover, J.P. Ahrens and B. Hamann, “Extracting, Visualizing and Tracking Mesoscale Ocean Eddies in Two-dimensional Image Sequences Using Contours and Moments,” in Workshop on Visualization in Environmental Sciences (EnvirVis) (2017).
- [17] N. Sakamoto and K. Koyamada, “KVS: A simple and effective framework for scientific visualization,” J. Adv. Simulation. Sci. Eng. 2, no. 1, 76 (2015).
- [18] A. Kageyama and N. Sakamoto, “4D Street View: A Video-based Visualization Method,” submitted to PeerJ Computer Science.
- [19] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent and J. Weaver, “Google Street View: Capturing the World at Street Level,” Computer 43, no. 6, 32 (2010).
- [20] E.H. Adelson and J.R. Bergen, “The Plenoptic Function and the Elements of Early Vision,” in Computational Models of Visual Processing (M. Landy and J.A. Movshon, eds.), pp. 3-20, Cambridge, Mass: The MIT Press (1991).
- [21] H. Miura and D. Hori, “Hall effects on local structures in decaying MHD turbulence,” J. Plasma Fusion Res. 8, 73 (2009).
- [22] H. Miura, K. Araki and F. Hamba, “Hall effects and subgrid-scale modeling in magnetohydrodynamic turbulence simulations,” J. Comput. Phys. 316, 385 (2016).
- [23] H. Miura, “Extendedmagnetohydrodynamic simulations of decaying, homogeneous, approximately-isotropic and incompressible turbulence,” Fluids 4, 46 (mar 2019).
- [24] N. Ohno and H. Ohtani, “Development of in-situ visualization tool for PIC simulation,” Plasma Fusion Res. 9, 3401071 (2014).
- [25] N. Greene, “Environment Mapping and Other Applications of World Projections,” IEEE Comput. Graph. Appl. 6, no. 11, 21 (1986).
- [26] G. Sellers, R.S. Write Jr. and N. Haemel, OpenGL Superbible: Comprehensive Tutorial and Reference (Addison-Wesley, 2015).