Plasma and Fusion Research

Volume 14, 1405044 (2019)

Regular Articles


Tritium Release from Molten FLiNaBe under Low Flux Neutron Irradiation
Kohki KUMAGAI1), Teruya TANAKA1,2), Takuya NAGASAKA1,2), Juro YAGI3), Takashi WATANABE2), Gaku YAMAZAKI1), Fuminobu SATO4), Shingo TAMAKI4), Isao MURATA4), Satoshi FUKADA5), Kazunari KATAYAMA5) and Akio SAGARA1,2)
1)
SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
2)
National Institute for Fusion Science, Toki 509-5292, Japan
3)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
4)
Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
5)
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga 816-8580, Japan
(Received 18 September 2018 / Accepted 24 January 2019 / Published 11 March 2019)

Abstract

Release behaviors of tritium from molten FLiNaBe (LiF–NaF–BeF2) have been examined in a series of low flux neutron irradiation experiments with an AmBe neutron source at the OKTAVIAN facility of Osaka University. Tritium released from FLiNaBe is swept by He and Ar gases, and recovered by water bubblers. The recovery rate of tritium released from 300 cm3 of FLiNaBe was 58.0 mBq/h in a steady state, and it was close to the tritium production rate of 58.0 mBq/h calculated by the MCNP6 code. The values of the overall mass transfer coefficients for tritium release from FLiNaBe were close to those for FLiNaK (LiF–NaF–KF) at 773 K. The influence of the diffusivity and the solubility of tritium on the overall mass transfer coefficients has been examined on molten FLiNaBe.


Keywords

FLiNaBe, molten salt, AmBe neutron source, low flux neutron, tritium recovery

DOI: 10.1585/pfr.14.1405044


References

  • [1] A. Sagara et al., Fusion Eng. Des. 89, 2114 (2014).
  • [2] A. Sagara et al., Fusion Eng. Des. 87, 594 (2012).
  • [3] R. Nygren, Fusion Sci. Technol. 47, 549 (2005).
  • [4] R. Serrano-López et al., Chem. Eng. Process. 73, 87 (2013).
  • [5] R. Nishiumi et al., Fusion Eng. Des. 109-111, 1663 (2016).
  • [6] K. Kumagai et al., Fusion Eng. Des. 136, 1269 (2018).
  • [7] W.K. Lewis and W.G. Whitman, Ind. Eng. Chem. 16, 1215 (1924).
  • [8] T. Goorley et al., Nucl. Technol. 180, 298 (2012).
  • [9] G.F. Knoll, Radiation Detection and Measurement, 4th ed., (Wiley, New York, 2010).
  • [10] A.D. Vijaya and A. Kumar, Nucl. Instrum. Methods 111, 435 (1973).
  • [11] M. Nishikawa et al., J. Nucl. Mater. 277, 99 (2000).
  • [12] K. Katayama et al., Fusion Eng. Des. 88, 2400 (2013).
  • [13] H.D. Baehr and K. Stephan, Heat and Mass Transfer, 3rd ed., (Springer-Verlag, Berlin, 2011).
  • [14] H. Katsuta and K. Furukawa, Rev. Chim. Min. 15, 49 (1978).
  • [15] A. Einstein, Ann. der Physik. 17, 549 (1905).
  • [16] D.A. Petti et al., Fusion Eng. Des. 81, 1439 (2006).
  • [17] J.H. Burns and E.K. Gordon, Acta Cryst. 20, 135 (1966).
  • [18] H. Shishido et al., Fusion Sci. Technol. 68, 669 (2015).