Plasma and Fusion Research
Volume 13, 3403094 (2018)
Regular Articles
- 1)
- Thailand Institute of Nuclear Technology, Bangkok, Thailand
- 2)
- Department of Physics, Mahasarakham University, Mahasarakham, Thailand
- 3)
- Department of Physics, Faculty of Science, King Mongkut University of Technology Thonburi, Bangkok, Thailand
- 4)
- Theoretical and Computational Physics Group, Theoretical and Computational Science Center, King Mongkut University of Technology Thonburi, Bangkok, Thailand
- 5)
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkla, Thailand
Abstract
This study investigates the plasma performance in HT-6M tokamak using 1.5D integrated predictive modeling code BALDUR. The simulations are carried out under the designed plasma conditions, including R = 65 cm, a = 20 cm, BT = 1.5 T, ne = 1 × 1019 m−3 and Ip = 40 - 150 kA without external heating. In these simulations, a combination of turbulence and neoclassical transports is used for predicting thermal and particle transport. Thus, the plasma evolution for plasma current, temperature, and density can be predicted under a designed condition. In addition, the influence of current rampup for the plasma performanceis investigated. The scenario study for the tokamak is also carried out by varying plasma current. To summarize the results yield the electron temperature at the center Te(0) = 477 - 1,551 eV (MMM95) and 328 - 1,384 eV (Mixed B/gB), the ion temperature at the center Ti(0) = 26 - 50 eV (MMM95) and 18 - 42 eV (Mixed B/gB) the electron densit y = 6.4 × 1018 - 1.4 × 1019 m−3 in both Mixed B/gB and MMM95 simulations. Using the obtained plasma parameters, the radiated power of the carbon impurity is assessed.
Keywords
tokamak, plasma, BALDUR, transport, MMM95, Mixed B/gB
Full Text
References
- [1] C.E. Singer et al., Comput. Phys. Commun. 49, 275 (1988).
- [2] A. Fukuyama et al., 20th IAEA Fusion Energy Conf. IAEA-CSP-25/CD/TH/P2-3 (2004).
- [3] G. Cenacchi and A. Taroni, ENEA-RT-TIB-88-5 19, 19097143 (1988).
- [4] J.F. Artaud et al., Nucl. Fusion 50, 043001 (2010).
- [5] G.V. Pereverzev and P.N. Yushmanov, Max-Planck-Institut für Plasmaphysik, Garching, IPP 5/98 (2002).
- [6] C.E. Kessel et al., Nucl. Fusion 47, 1274 (2007).
- [7] M. Murakami et al., Nucl. Fusion 51, 103006 (2011).
- [8] G. Bateman et al., Phys. Plasmas 5, 1793 (1998).
- [9] T.J.J. Tala et al., Plasma Phys. Control. Fusion 43, 507 (2001).
- [10] W.A. Houlberg et al., Phys. Plasmas 4, 3230 (1997).
- [11] H.-6M Team, Fusion Technol. 9, 476 (1986).
- [12] H.P. Summers, The ADAS User Manual, version 2.6 (2004). http://adas.ac.uk
- [13] D. Hannum et al., Phys. Plasmas 8, 964 (2001).
- [14] T. Onjun et al., Phys. Plasmas 8, 975 (2001).
- [15] J.E. Kinsey, G. Bateman, A.H. Kritz and A. Redd, Phys. Plasmas 3, 561 (1996).
- [16] J.E. Kinsey and G. Bateman, Phys. Plasmas 3, 3344 (1996).
- [17] H. Nordman, J. Weiland and A. Jarmén, Nucl. Fusion 30, 983 (1990).
- [18] J. Weiland and A. Hirose, Nucl. Fusion 32, 151 (1992).
- [19] P.N. Guzdar, J.F. Drake, D. McCarthy, A.B. Hassam and C.S. Liu, Phys. Fluids B Plasma Phys. 5, 3712 (1993).
- [20] T.J.J. Tala et al., Plasma Phys. Control. Fusion 44, A495 (2002).
- [21] A. Taroni, M. Erba, E. Springmann and F. Tibone, Plasma Phys. Control. Fusion 36, 1629 (1994).
- [22] M. Erba, V. Parail, E. Springmann and A. Taroni, Plasma Phys. Control. Fusion 37, 1249 (1995).
- [23] M. Erba, T. Aniel, V. Basiuk, A. Becoulet and X. Litaudon, Nucl. Fusion 38, 1013 (1998).
- [24] P. Zhu, G. Bateman, A.H. Kritz and W. Horton, Phys. Plasmas 7, 2898 (2000).
- [25] A.Y. Pankin et al., Plasma Phys. Control. Fusion 47, 483 (2005).
- [26] Xu Wei, Wan Bao-Nian and Xie Ji-Kang, Acta Phys. Sin. 52, 1970 (2003).