Plasma and Fusion Research

Volume 13, 3401095 (2018)

Regular Articles


Dissipative Particle Dynamics Simulation for Self-Assembly of Symmetric Bolaamphiphilic Molecules in Solution
Susumu FUJIWARA, Yoshiki IIDA, Takehide TSUTSUI, Tomoko MIZUGUCHI, Masato HASHIMOTO, Yuichi TAMURA1) and Hiroaki NAKAMURA2)
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
1)
Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
2)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 28 December 2017 / Accepted 6 June 2018 / Published 26 July 2018)

Abstract

The self-assembly of dissolved symmetric bolaamphiphilic molecules is studied using dissipative particle dynamics simulations. Specifically, we investigate how interactions between the dual hydrophilic ends of the molecules affect the self-assembly process. Simulations show that four types of self-assembled structures (spherical micelles, tubes, vesicles, and wormlike micelles) are obtained from a random configuration of symmetric bolaamphiphilic molecules in solution. We find that the self-assembled structures change from spherical micelles to tubes, then to vesicles, and finally to wormlike micelles as the repulsive interactions between the hydrophilic ends increase. The molecular shapes in vesicles tend to be more rodlike than those in spherical micelles, tubes, or wormlike micelles.


Keywords

dissipative particle dynamics simulation, self-assembly, symmetric bolaamphiphilic molecule, spherical micelle with internal structures, tube, vesicle, wormlike micelle

DOI: 10.1585/pfr.13.3401095


References

  • [1] S. Fujiwara and T. Sato, J. Chem. Phys. 107, 613 (1997).
  • [2] S. Fujiwara and T. Sato, J. Chem. Phys. 114, 6455 (2001).
  • [3] S. Fujiwara and T. Sato, Phys. Rev. Lett. 80, 991 (1998).
  • [4] S. Fujiwara and T. Sato, J. Chem. Phys. 110, 9757 (1999).
  • [5] S. Fujiwara, M. Hashimoto, T. Itoh and H. Nakamura, J. Phys. Soc. Jpn. 75, 024605 (2006).
  • [6] S. Fujiwara, T. Itoh, M. Hashimoto and Y. Tamura, Mol. Simul. 33, 115 (2007).
  • [7] S. Fujiwara, T. Itoh, M. Hashimoto and R. Horiuchi, J. Chem. Phys. 130, 144901 (2009).
  • [8] S. Fujiwara, D. Funaoka, T. Itoh and M. Hashimoto, Comput. Phys. Commun. 182, 192 (2011).
  • [9] R. Shirasaki, Y. Yoshikai, H. Qian, S. Fujiwara, Y. Tamura and H. Nakamura, Plasma Fusion Res. 6, 2401116 (2011).
  • [10] S. Fujiwara, M. Hashimoto, T. Itoh and R. Horiuchi, Chem. Lett. 41, 1038 (2012).
  • [11] S. Fujiwara, M. Hashimoto, Y. Tamura, H. Nakamura and R. Horiuchi, Plasma Fusion Res. 9, 3401067 (2014).
  • [12] S. Fujiwara, T. Miyata, M. Hashimoto, Y. Tamura, H. Nakamura and R. Horiuchi, Plasma Fusion Res. 10, 3401029 (2015).
  • [13] S. Fujiwara, Y. Takahashi, H. Ikebe, T. Mizuguchi, M. Hashimoto, Y. Tamura, H. Nakamura and R. Horiuchi, Plasma Fusion Res. 11, 2401073 (2016).
  • [14] J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed (Academic Press, London, 1992).
  • [15] Micelles, Membranes, Microemulsions, and Monolayers, edited by W.M. Gelbart, A. Ben-Shaul and D. Roux (Springer-Verlag, New York, 1994), pp. 1-104.
  • [16] I.W. Hamley, Introduction to Soft Matter, Rev. ed. (J. Wiley, Chichester, 2007).
  • [17] X. Li, I.V. Pivkin, H. Liang and G.E. Karniadakis, Macromolecules 42, 3195 (2009).
  • [18] P. Español and P.B. Warren, Europhys. Lett. 30, 191 (1995).
  • [19] R.D. Groot and P.B. Warren, J. Chem. Phys. 107, 4423 (1997).
  • [20] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
  • [21] http://octa.jp/