Plasma and Fusion Research

Volume 13, 3401073 (2018)

Regular Articles


Study on Dynamic Behaviors of Ionization Waves Influenced by Feedback in a Glow Discharge Plasma
Takao FUKUYAMA and Yuta HIGASHIURA
Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
(Received 10 December 2017 / Accepted 11 May 2018 / Published 12 June 2018)

Abstract

Dynamic behaviors of ionization waves influenced by feedback are experimentally studied. Delayed feedback is useful for stabilization of chaotic system; it has applicability in controlling chaos. However, delayed feedback can also result in a stable system becoming unstable, or even chaotic. The ionization wave system in our experiment has one spatial degree of freedom. Neon gas is introduced into a glass tube that has been evacuated to high vacuum, and a glow discharge Ne plasma is produced by an electric current between two electrodes. Fluctuations in the light intensity are sampled using two photodiodes placed a certain distance apart; the intensity sampled from one photodiode is fed back to the system through an external circuit. The largest Lyapunov exponents are calculated from the time series sampled from the photodiodes. The value of the largest Lyapunov exponent is positive for chaotic oscillations, with higher values for more chaotic systems. The value becomes close to zero for a system with periodic oscillations. In our studies, we found that a chaotic system can be made periodic by applying feedback while the distance between two photodiodes is a multiple of a particular value.


Keywords

ionization wave, glow discharge, delayed feedback, chaos and periodicity, controlling chaos

DOI: 10.1585/pfr.13.3401073


References

  • [1] E.R. Hunt, Phys. Rev. Lett. 67, 1953 (1991).
  • [2] S. Bielawski, D. Derozier and P. Glorieux, Phys. Rev. E 49, R971 (1994).
  • [3] P. Parmananda, R. Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss and V. Gaspar, Phys. Rev. E 59, 5266 (1999).
  • [4] W.X. Ding, H.Q. She, W. Huang and C.X. Yu, Phys. Rev. Lett. 72, 96 (1994).
  • [5] Th. Pierre, G. Bonhomme and A. Atipo, Phys. Rev. Lett. 76, 2290 (1996).
  • [6] K. Taniguchi and Y. Kawai, Phys. Rev. Lett. 83, 548 (1999).
  • [7] T. Klinger and Ch. Schröder, Phys. Plasmas 8, 1961 (2001).
  • [8] T. Fukuyama, H. Shirahama and Y. Kawai, Phys. Plasmas 9, 4525 (2002).
  • [9] E. Ott, C. Grebogi and J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
  • [10] K. Pyragas, Phys. Lett. A 170, 421 (1992).
  • [11] T. Ohira and T. Yamane, Phys. Rev. E 61, 1247 (2000).
  • [12] M. Bertram, C. Beta, M. Pollmann and A.S. Mikhailov, Phys. Rev. E 67, 036208 (2003).
  • [13] A.G. Balanov, N.B. Janson and E. Schöll, Phys. Rev. E 71, 016222 (2005).
  • [14] M. Novák, Czech. J. Phys. 10, 954 (1960).
  • [15] N.L. Oleson and A.W. Cooper, Adv. Electron. Electron Phys. 24, 155 (1968).
  • [16] M. Rottmann and K.H. Spatschek, J. Plasma Phys. 60, 215 (1998).
  • [17] K. Ohe and S. Takeda, Contrib. Plasma Phys. 14, 55 (1974).
  • [18] L. Sirghi, K. Ohe and G. Popa, J. Phys. D: Appl. Phys. 31, 551 (1998).
  • [19] N. Bekki, J. Phys. Soc. Jpn. 50, 659 (1981).
  • [20] D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971).
  • [21] A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Physica D 16, 285 (1985).