Plasma and Fusion Research
Volume 13, 2505013 (2018)
Overview Articles
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
Abstract
At the Japan Proton Accelerator Research Complex, a pulsed spallation neutron source has been providing neutron beams with high intensities and narrow pulse widths since 2008 for various materials science experiments. The neuron-pulse characteristics measured during early low-power operations indicated that this source is capable of providing the world's highest peak neutron intensities and pulse resolution at the 1-MW operation level, which is the goal of the facility. To achieve this operational goal, efforts have been underway to solve a critical issue affecting the target operation, i.e. mitigation of cavitation damages at the front end of the mercury target vessel, by injecting gas micro-bubbles and using a fast flow of the mercury through a narrow channel. Another issue is that the target vessel needs to be redesigned to ensure its robustness against the cyclic thermal stress produced by the temperature swings when the proton-beam trips because the water shroud surrounding the mercury target vessel failed during 500-kW operation in 2015.
Keywords
spallation neutron source, mercury target, moderator, para-hydrogen, decoupler, cavitation damage, pressure wave, micro-bubble, narrow channel
Full Text
References
- [1] H. Takada et al., Quantum Beam Science 1, 8 (2017).
- [2] F.Maekawa et al., Nucl. Instrm. Methods Phys. Res. A 620, 159 (2010).
- [3] M. Futakawa et al., J. Nucl. Sci. Technol. 45, 1041 (2008).
- [4] B. Riemer et al., J. Nucl. Mater. 377, 162 (2008).
- [5] B. Riemer et al., J. Nucl. Mater. 450, 192 (2014).
- [6] H. Kogawa et al., J. Nucl. Sci. Technol. 56, 1461 (2015).
- [7] M. Futakawa, JPS Conf. Proc. 8, 0010002 (2015).
- [8] H. Kogawa et al., J. Nucl. Sci. Technol. 54, 733 (2017).
- [9] K. Haga et al., JPJ Conf. Proc. 8, 051008 (2015).
- [10] J.R. Haines et al., Nucl. Instrm. Methods Phys. Res. A 764, 94 (2014).
- [11] B.W. Riemer et al., Proceedings of the 11th International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2013), Brugge, Belgium, August 5-8, 2013, pp.359-365 (2014).
- [12] J-PARC Center, “J-PARC ANNUAL REPORT 2015 Vol.2: Materials and Life Science Experimental Facility”, J-PARC 17-01, pp.54-55 (2017).
- [13] M. Tamura and F. Maekawa, JAERI-Tech 2003-010 (2003) (in Japanese).
- [14] R.E. MacFarlane et al., LA-12639-MS (1994).
- [15] T. Kai et al., Nucl. Instrum. Methods Phys. Res. A 523, 398 (2004).
- [16] T. Kai et al., Nucl. Instrum. Methods Phys. Res. A 550, 329 (2005).
- [17] F. Maekawa et al., Nucl. Instrum. Methods Phys. Res. A 620, 159 (2010).
- [18] M. Teshigawara et al., J. Nucl. Mater. 343, 154 (2005).
- [19] K. Kikuchi et al., Mater. Sci. Forum 652, 92 (2010).
- [20] M. Harada, J. Nucl. Mater. 398, 93 (2010).
- [21] F. Maekawa et al., Nucl. Instrum. Methods Phys. Res. A 600, 335 (2009).
- [22] T. Kamiyama and K. Oikawa, Proc. 16th Int. Collaboration Mtg. Advanced Neutron Sources, Dusseldorf-Neuss, Germany, May 12-15, ISSN 1433-559X, 309 (2003).
- [23] W.I.F. David and M.W. Johnson, Proc. 8th Int. Collaboration Mtg. Advanced Neutron Sources, Rutherford Appleton Laboratory, UK, 427 (1985).
- [24] M. Teshigawara et al., J. Nucl. Mater. 398, 238 (2010).
- [25] T. Naoe and M. Futakawa, Trans. JSME 80, fe0025-1 (2014) (in Japanese).
- [26] H. Takada et al., Proc. AccApp '15, Washington DC, USA, November 10-13, 2015, p.297 (2016).
- [27] T. Naoe et al., 13th Int. Workshop on Spallation Materials Technologies, Chattanooga, Tennessee, USA, Oct. 30 - Nov. 4, 2016 (in press in J. Nucl. Mater.). https://doi.org/10.1016/j.jnucmat.2017.12.019
- [28] T. Naoe et al., J. Nucl. Mater. 468, 313 (2016).
- [29] K. Haga et al., J. Nucl. Sci. Technol. 55, 160 (2018).