Plasma and Fusion Research

Volume 13, 1306120 (2018)

Letters


Investigation on Hard-Tissue Compatibility of TiN Surface Formed by Atmospheric-Pressure-Plasma Nitriding
Ryuji SANNOMIYA, Ryuta ICHIKI, Ryoto OTANI, Katsuhiro HANADA1), Masaki SONODA2), Shuichi AKAMINE and Seiji KANAZAWA
Division of Electrical and Electronic Engineering, Oita University, Oita 870-1192, Japan
1)
Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
2)
Oita Industrial Research Institute, Oita 870-1117, Japan
(Received 25 July 2018 / Accepted 5 September 2018 / Published 23 October 2018)

Abstract

In this study, we demonstrated the improvement in the biocompatibility of titanium alloy by atmospheric-pressure-plasma nitriding, in which the pulsed-arc plasma jet is sprayed onto a titanium alloy to form TiN surface. The deposition properties of calcium phosphate on different samples were compared after immersion in simulated body fluid to investigate hard-tissue compatibility. It was determined that the growth of the calcium phosphate layer on the nitrided sample was the most rapid. This result suggests that atmospheric-pressure-plasma nitriding has the potential to easily improve the hard-tissue compatibility of titanium alloy.


Keywords

atmospheric-pressure plasma, pulsed-arc plasma jet, nitriding, titanium alloy, biocompatibility

DOI: 10.1585/pfr.13.1306120


References

  • [1] N. Lin, X. Huang, X. Zhang, A. Fan, L. Qin and B. Tang, Appl. Surf. Sci. 258, 7047 (2012).
  • [2] Y. Zhao, S.M. Wong, H.M. Wong, S. Wu, T. Hu, K.W.K. Yeung and P.K. Chu, ACS Appl. Mater. Interfaces 5, 1510 (2013).
  • [3] N. Lin, X. Huang, J. Zou, X. Zhang, L. Qin, A. Fan and B. Tang, Surf. Coat. Technol. 209, 212 (2012).
  • [4] K. Bordji, J.Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K.-T. Rie, T. Stucky and M. Hage-Ali, Biomaterials 17, 929 (1996).
  • [5] Y.X. Leng, P. Yang, J.Y. Chen, H. Sun, J. Wang, G.J. Wang, N. Huang, X.B. Tian and P.K. Chu, Surf. Coat. Technol. 138, 296 (2001).
  • [6] J. Park, D.-J. Kim, Y.-K. Kim, K.-H. Lee, K.-H. Lee, H. Lee and S. Ahn, Thin Solid Films 435, 102 (2003).
  • [7] H.-H. Huang, C.-H. Hsu, S.-J. Pan, J.-L. He, C.-C. Chen and T.-L. Lee, Appl. Surf. Sci. 244, 252 (2005).
  • [8] M. Braic, M. Balaceanu, V. Braic, A. Vladescu, G. Pavelescu and M. Albulescu, Surf. Coat. Technol. 200, 1014 (2005).
  • [9] M.I. Sarró, D.A. Moreno, C. Ranninger, E. King and J. Ruiz, Surf. Coat. Technol. 201, 2807 (2006).
  • [10] J. Wang, Y. An, H. Liang, Y. Tong, T. Guo and C. Ma, Arch. Oral Biol. 58, 1293 (2013).
  • [11] A. Fan, H. Zhang, Y. Ma, X. Zhang, J. Zhang and B. Tang, J. Wuhan Univ. Technol., Mater. Sci. Ed. 28, 1223 (2013).
  • [12] Y. Zhao, S.M. Wong, H.M. Wong, H. Pan, K.W.K. Yeung and P.K. Chu, Surf. Coat. Technol. 229, 130 (2013).
  • [13] M. Wang, Y. Ning, H. Zou, S. Chen, Y. Bai, A. Wang and H. Xia, Biomed. Mater. Eng. 24, 643 (2014).
  • [14] M. Hashimoto, K. Hayashi and S. Kitaoka, Mater. Sci. Eng. 33, 4155 (2013).
  • [15] T. Kokubo, T. Ueda, M. Kawashita, Y. Ikuhara, G.H. Takaoka and T. Nakamura, J. Mater. Sci. 19, 695 (2008).
  • [16] X. Zhao, X. Liu and C. Ding, J. Biomed. Mater. Res. 75A, 888 (2005).
  • [17] X. Zhao, X. Liu, J. You, Z. Chen and C. Ding, Surf. Coat. Technol. 202, 3221 (2008).
  • [18] B.S. Yilbaş, A.Z. Şahin, A.Z. Al-Garni, S.A.M. Said, Z. Ahmed, B.J. Abdulaleem and M. Sami, Surf. Coat. Technol. 80, 287 (1996).
  • [19] H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer and A. Ricard, Surf. Coat. Technol. 72, 103 (1995).
  • [20] T. Czerwiec, H. Michel and E. Bergmann, Surf. Coat. Technol. 108-109, 182 (1998).
  • [21] N. Renevier, P. Colligon, H. Michel and T. Czerwiec, Surf. Coat. Technol. 111, 128 (1999).
  • [22] K.-T. Rie, Surf. Coat. Technol. 112, 56 (1999).
  • [23] M. Tamaki, Y. Tomii and N. Yamamoto, Plasma Ions 3, 33 (2000).
  • [24] F.M. El-Hossary, N.Z. Negm, S.M. Khalil and M. Raaif, Thin Solid Films 497, 196 (2006).
  • [25] M. Raaif, F.M. El-Hossary, N.Z. Negm, S.M. Khalil and P. Schaaf, J. Phys.: Condens. Matter 19, 396003 (2007).
  • [26] F. Yildiz, A.F. Yetim, A. Alsaran and A. Çelik, Surf. Coat. Technol. 202, 2471 (2008).
  • [27] A.F. Yetim, F. Yildiz, Y. Vangolu, A. Alsaran and A. Celik, Wear 267, 2179 (2009).
  • [28] R. Ichiki and T. Hara, Jpn. J. Appl. Phys. 48, 076001 (2009).
  • [29] A. Nishimoto, T.E. Bell and T. Bell, Surf. Eng. 26, 74 (2010).
  • [30] S. Farè, N. Lecis, M. Vedani, A. Silipigni and P. Favoino, Surf. Coat. Technol. 206, 2287 (2012).
  • [31] D. Liedtke, Wärmebehandlung von Eisenwerkstoffen II: Nitrieren und Nitrocarburieren (Expert Verlag, Renningen, 2010) 5th ed. [in German].
  • [32] R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine and S. Kanazawa, Mater. Lett. 71, 134 (2012).
  • [33] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine and S. Kanazawa, Surf. Coat. Technol. 225, 26 (2013).
  • [34] T. Inoue, R. Ichiki, M. Mitani, M. Yoshida, S. Akamine and S. Kanazawa, Netsu-Shori (Heat Treatment) 55, 165 (2015) [in Japanese].
  • [35] Y. Yoshimitsu, R. Ichiki, K. Kasamura, M. Yoshida, S. Akamine and S. Kanazawa, Jpn. J. Appl. Phys. 54, 030302 (2015).
  • [36] R. Ichiki, K. Yamanouchi, A. Maeda, H. Yamamoto, S. Akamine and S. Kanazawa, Proc. 21st Intl. Conf. Gas Discharges and their Applications, 429 (2016).
  • [37] J. Hieda, M. Niinomi, M. Nakai and K. Cho, Mater. Sci. Eng. 54, 1 (2015).
  • [38] I. Gurappa, Mater. Charact. 49, 73 (2002).
  • [39] X. Liu, C. Ding and Z. Wang, Biomaterials 22, 2007 (2001).
  • [40] J. Weng, Q. Liu, J.G.G. Wolke and X. Zhang, Biomaterials 18, 1027 (1997).
  • [41] H. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Ceram. Soc. Jpn. 105, 111 (1997).
  • [42] X. Zhao, X. Liu, J. You, Z. Chen and C. Ding, Surf. Coat. Technol. 202, 3221 (2008).