Plasma and Fusion Research

Volume 12, 1402028 (2017)

Regular Articles


Experimental Study on Slowing-Down Mechanism of Locked-Mode-Like Instability in LHD
Yuki TAKEMURA1,2), Kiyomasa WATANABE1), Tokihiko TOKUZAWA1), Satoru SAKAKIBARA1,2), Yoshiro NARUSHIMA1,2), Masaaki OKAMOTO3), Satoshi OHDACHI1,2), Yasuhiro SUZUKI1,2), Katsumi IDA1,2), Mikiro YOSHINUMA1,2), Hayato TSUCHIYA1), Ichihiro YAMADA1) and LHD Experiment Group
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
SOKENDAI (the Graduate University for Advanced Studies), Toki 509-5292, Japan
3)
National Institute of Technology, Ishikawa College, Ishikawa 929-0342, Japan
(Received 26 January 2017 / Accepted 1 May 2017 / Published 12 June 2017)

Abstract

In order to clarify the mechanism responsible for slowing down the precursor of an instability in Large Helical Device (LHD), whose behavior is similar to the locked mode instability in tokamaks, the spatial structure of the precursor of the locked-mode-like instability, and the relationship between the rotation of the precursor and the E × B rotation were experimentally investigated. The precursor rotates together with the E × B rotation at the resonant surface, and the precursor rotation slows down because of a decrease of the E × B rotation. The multi-channel fluctuation measurement of the precursor suggests that the precursor has a magnetic island, which may be related to the decrease of the E × B rotation. In addition, the reason for the appearance of the precursor with a magnetic island is discussed. The precursor appears when a magnetic island grows initially without rotation but then shrinks and begins to rotate.


Keywords

slowing-down mechanism, MHD instability, magnetic island, locked mode, LHD

DOI: 10.1585/pfr.12.1402028


References

  • [1] A. Komori et al., Nucl. Fusion 49, 104015 (2009).
  • [2] K.Y. Watanabe et al., Phy. Plasma 18, 056119 (2011).
  • [3] S. Sakakibara et al., Plasma Fusion Res. 1, 049 (2006).
  • [4] S. Sakakibara et al., Plasma Phys. Control. Fusion 50, 124014 (2008).
  • [5] S. Sakakibara et al., Fusion Sci. Technol. 50, 177 (2006).
  • [6] S. Sakakibara et al., Fusion Sci. Technol. 58, 176 (2010).
  • [7] Y. Takemura et al., Nucl. Fusion 52, 102001 (2012).
  • [8] C. Nührenberg, Phys. Plasmas 3, 2401 (1996).
  • [9] J.A. Snipes et al., Nucl. Fusion 28, 1085 (1988).
  • [10] J.T. Scoville et al., Nucl. Fusion 31, 875 (1991).
  • [11] T.C. Hender et al., Progress in the ITER Physics Basis Chapter 3: MHD stability, operational limits and disruptions, Nucl. Fusion 47, S128-202 (2007).
  • [12] R.J. Buttery et al., Nucl. Fusion 39, 1827 (1999).
  • [13] R. Fitzpatrick, Phys. Plasmas 1, 3308 (1994).
  • [14] R. Ueda et al., Phys. Plasmas 21, 052502 (2014).
  • [15] S. Sakakibara, H. Yamada and LHD Experiment Group, Fusion Sci. Technol. 58, 471 (2010).
  • [16] Y. Takemura et al., Plasma Fusion Res. 8, 1402123 (2013).
  • [17] T. Tokuzawa et al., Magnetic island formation in locked-like mode in helical plasmas, The 26th IAEA Fusion Energy Conference (Kyoto, Japan, 2016).