Plasma and Fusion Research
Volume 12, 1401018 (2017)
Regular Articles
- 1)
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
- 2)
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan
- 3)
- National Institute for Fusion Science, Gifu 509-5292, Japan
Abstract
Electron density (ne) and electron temperature (Te) measurements were performed via the plasma assembly for nonlinear turbulence analysis (PANTA) using the laser Thomson scattering technique. The second harmonic of Nd:YAG laser (λ = 532 nm) and an intensified charge-coupled device were used as a light source and a detector, respectively. Plasmas in PANTA were generated with Ar gas in a pressure range of 1 - 5 mTorr. The range of the applied magnetic field was 600 - 1500 G. At the center of the plasma, ne and Te ranged (4 - 20) × 1018 m−3 and 0.8 - 3 eV, respectively. Further, ne monotonically increased and Te monotonically decreased with the increasing gas pressure and magnetic field.
Keywords
PANTA, laser Thomson scattering, electron density, electron temperature, Ar plasma
Full Text
References
- [1] S. Teii, Plasma Kisokougaku [Plasma Engineering Science], Sec. 3 (Uchida Rokakuho 1995).
- [2] S.-L. Chen, J.-S. Chang and S. Matsumura, J. Appl. Phys. 41, 1711 (1970).
- [3] W.C. Young and D. Parfeniuk, Rev. Sci. Instrum. 87, 11E521 (2016).
- [4] K. Muraoka and A. Kono, J. Phys. D. Appl. Phys. 44, 43001 (2011).
- [5] A. Kono and K. Iwamoto, Jpn. J. Appl. Phys. 43, L1010 (2004).
- [6] M.J. van de Sande, Laser Scattering on Low Temperature Plasmas—High Resolution and Stray Light Rejection, Eindhoven, Eindhoven University of Technology, Ph. D thesis (2002).
- [7] K. Tomita, K. Nakayama, K. Inoue, A. Sunahara and K. Uchino, Appl. Phys. Express 6, 076101 (2013).
- [8] D. Froula, L. Divol and S. Glenzer, Phys. Rev. Lett. 88, 105003 (2002).
- [9] T. Morita, Y. Sakawa, K. Tomita, T. Ide, Y. Kuramitsu, K. Nishio, K. Nakayama, K. Inoue, T. Moritaka, H. Ide, M. Kuwada, K. Tsubouchi, K. Uchino and H. Takabe, Phys. Plasmas 20, 92115 (2013).
- [10] A. Okamoto et al., Contrib. Plasma Phys. 46, No.5-6, 416 (2006).
- [11] H. Arakawa et al., Plasma Phys. Control. Fusion 52, 105009 (2010).
- [12] M. Sasaki, N. Kasuya, K. Itoh, M. Yagi and S.-I. Itoh, Nucl. Fusion 54, 114009 (2014).
- [13] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Nagashima, H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya, M. Sasaki, M. Lesur, A. Fujisawa and K. Itoh, Sci. Rep. 6, 22189 (2016).
- [14] J. Sheffield, D. Froula, S.H. Glenzer and N.C. Luhmann Jr., Plasma Scattering of Electromagnetic Radiation, 2nd Edition (Academic Press, 2010).
- [15] S. Hübner, S. Hofmann, E.M. van Veldhuizen and P.J. Bruggeman, Plasma Sources Sci. Technol. 22, 65011 (2013).
- [16] W. Chen, K. Ogiwara, K. Koge, K. Tomita, K. Uchino and Y. Kawai, Plasma Fusion Res. 8, 1306114 (2013).
- [17] S. Hassaballa, M. Yakushiji, Y.K. Kim, K. Tomita, K. Uchino and K. Muraoka, IEEE Trans. Plasma Sci. 32, 127 (2004).
- [18] K. Tomita, K. Urabe, N. Shirai, Y. Sato, S. Hassaballa, N. Bolouki, M. Yoneda, T. Shimizu and K. Uchino, Jpn. J. Appl. Phys. 55, 66101 (2016).
- [19] A.F.H. van Gessel, E.A.D. Carbone, P.J. Bruggeman and J.J.A.M. van der Mullen, Plasma Sources Sci. Technol. 21, 15003 (2012).
- [20] I. Yamada, K. Narihara, H. Hayashi, H. Funaba and LHD experimental group, Plasma Fusion Res. 2, S1106 (2007).
- [21] R. Scannell, M. Beurskens, M. Kempenaars, G. Naylor, M. Walsh, T. O'Gorman and R. Pasqualotto, Rev. Sci. Instrum. 81, 1 (2010).
- [22] R. Thalman, K.J. Zarzana, M.A. Tolbert and R. Volkamer, J. Quant. Spectrosc. Radiat. Transf. 147, 171 (2014).
- [23] M. Arnaud and R. Rohtenflug, Astron. Astrophys. Suppl. Ser. 60, 425 (1985).
- [24] S. Inagaki, Y. Miwa, T. Kobayashi, T. Yamada, Y. Nagashima, T. Mitsuzono, H. Fujino, M. Sasaki, N. Kasuya, M. Lesur, Y. Kosuga, A. Fujisawa, S.-I. Itoh and K. Itoh, Plasma Fusion Res. 9, 3 (2014).