# Plasma and Fusion Research

## Volume 12, 1401010 (2017)

# Regular Articles

- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan

### Abstract

The nonlinear phase of magnetic reconnection is investigated by numerically solving a gyrofluid model. The scaling law for the explosive reconnection rate, which has been recently derived for an ideal two-fluid model [Hirota et al., Phys. Plasmas 22, 052114 (2015)], is found to consistently hold when either the ion-sound gyroradius ρ_{S}, or the ion gyroradius ρ_{i} is comparable to the electron skin depth d_{e}, even in the presence of finite resistivity η. In this explosive phase, a local X-shaped current layer is spontaneously generated, in which the reconnection speed is closely related to the macroscopic shape of the layer and is almost independent of the layer width. The reconnection speed is therefore insensitive to the size of the microscopic scales, ρ_{S}, ρ_{i}, d_{e} and η. On the other hand, in the cold plasma limit, where ρ_{S} = ρ_{i} = 0, the intermittent acceleration of the reconnection speed is caused by the plasmoid instability. This also seems to be explosive on average, but the rate always falls below the explosive scaling law. The reconnection time extrapolated from this scaling law is shown to be fast enough to explain the time scale of solar flares.

### Keywords

magnetic reconnection, explosive instability, gyrofluid model, plasmoid instability, solar flare

### Full Text

### References

- [1] P.A. Sweet, Electromagnetic Phenomena in Cosmical Physics, IAU Symp. No. 6, edited by B. Lehnert (Cambridge Press, London, 1958) p. 123; E.N. Parker, J. Geophys. Res. 62, 509 (1957).
- [2] W.H. Matthaeus and S.L. Lamkin, Phys. Fluids 28, 303 (1985).
- [3] D. Biskamp, Phys. Fluids 29, 1520 (1986).
- [4] K. Shibata and S. Tanuma, Earth Planets Space 53, 473 (2001).
- [5] A. Bhattacharjee, Y.-M. Huang, H. Yang and B. Rogers, Phys. Plasmas 16, 112102 (2009).
- [6] L. Comisso, M. Lingam, Y.-M. Huang and A. Bhattacharjee, Phys. Plasmas 23, 100702 (2016).
- [7] J. Birn et al., J. Geophys. Res. 106, 3715 (2001).
- [8] A.Y. Aydemir, Phys. Fluids B 4, 2469 (1992).
- [9] E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli and A. Saluzzi, Phys. Rev. Lett. 80, 4430 (1998).
- [10] D. Grasso, F. Califano, F. Pegoraro and F. Porcelli, Plasma Phys. Rep. 26, 512 (2000).
- [11] A. Bhattacharjee, K. Germaschewski and C.S. Ng, Phys. Plasmas 12, 042305 (2005).
- [12] L. Comisso, D. Grasso, F.L. Waelbroeck and D. Borgogno, Phys. Plasmas 20, 092118 (2013).
- [13] A. Ishizawa and T.-H.Watanabe, Phys. Plasmas 20, 102116 (2013).
- [14] H.E. Petschek, Physics of Solar Flares, Edited by W.N. Hess (NASA SP-50, Washington DC, 1964) p.425.
- [15] M. Hirota, Y. Hattori and P.J. Morrison, Phys. Plasmas 22, 052114 (2015).
- [16] T.J. Schep, F. Pegoraro and B.N. Kuvshinov, Phys. Plasmas 1, 2843 (1994).
- [17] E. Tassi, P.J. Morrison, D. Grasso and F. Pegoraro, Nucl. Fusion 50, 034007 (2010).
- [18] F.L.Waelbroeck and E. Tassi, Commun. Nonlinear Sci. Numer. Simul. 17, 2171 (2012).
- [19] D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, Cambridge, 2000).
- [20] F. Porcelli, Phys. Rev. Lett. 66, 425 (1991).
- [21] M. Ottaviani and F. Porcelli, Phys. Rev. Lett. 71, 3802 (1993).
- [22] M. Hirota, P.J. Morrison, Y. Ishii, M. Yagi and N. Aiba, Nucl. Fusion 53, 063024 (2013).