Plasma and Fusion Research

Volume 11, 2505090 (2016)

Overview Articles


Oxide Dispersion Strengthened Steels for Advanced Blanket Systems
Akihiko KIMURA, Wentuo HAN, Hwanil JE, Kiyohiro YABUUCHI and Ryuta KASADA
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
(Received 13 December 2015 / Accepted 19 April 2016 / Published 30 June 2016)

Abstract

Oxide dispersion strengthened (ODS) steels with nano-scaled oxide particles in high density in ferrite/ martensite matrix and on grain boundaries of ultra-fine grains have excellent properties as structural material for fusion blankets, while some issues of fabrication processes are still remaining to be solved. In this overview, material properties of recently developed ODS steels are introduced in comparison to ferritic/martensitic (F/M) steels: 1) mechanical properties, 2) corrosion behavior and 3) radiation tolerance in ODS steels, which are outstandingly superior to the F/M steels. Coupling use of the ODS and F/M steels is effective to expand the design margin of fusion blankets. R&D of dissimilar joining of FM/ODS steels is indispensable.


Keywords

structural material, strength, corrosion, radiation tolerance, high thermal efficiency, long lifetime

DOI: 10.1585/pfr.11.2505090


References

  • [1] A. Moslang, C.R. Physique 9, 457 (2008).
  • [2] F.W. Wiffen and R.T. Santoro, Proceedings of the Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, AIME, New York (1984).
  • [3] M. Tamura, H. Hayakawa, H. Tanimura, A. Hishinuma and T. Kondo, J. Nucl. Mater. 141-143, 1067 (1986).
  • [4] H. Tanigawa et al., J. Nucl. Mater. 417, 9 (2011).
  • [5] A. Kimura et al., J. Nucl.Mater. 367-370, 60 (2007).
  • [6] A. Kimura, M. Narui and H. Kayano, J. Nucl. Mater. 191-194, 879 (1992).
  • [7] A. Kimura and H. Matsui, J. Nucl. Mater. 212-215, 701 (1994).
  • [8] A. Kimura, T. Morimura, M. Narui and H. Matsui, J. Nucl. Mater. 233-237, 319 (1996).
  • [9] T. Liao, O.N. Bedoya-Martínez and G. Roma, J. Phys. Chem. C 114, 22691 (2010).
  • [10] L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo and D.A. Petti, J. Nucl. Mater. 371, 329 (2007).
  • [11] Y. Katoh, L.L. Snead, C.M. Parish and T. Hinoki, J. Nucl. Mater. 434, 141 (2013).
  • [12] S.J. Zinkle et al., J. Nucl. Mater. 258-263, 205 (1998).
  • [13] R.J. Kurtz et al., J. Nucl. Mater. 329-333, 47 (2004).
  • [14] T. Muroga et al., J. Nucl. Mater. 307-311, 547 (2002).
  • [15] A. Kimura et al., J. Nucl. Mater. 417, 176 (2011).
  • [16] L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime and Y. Serruys, J. Nucl. Mater. 409, 72 (2011).
  • [17] T. Kaito et al., J. Nucl. Mater. 386-388, 294 (2009).
  • [18] S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda and T. Kobayashi, J. Nucl. Sci. Technol. 39, 778 (2002).
  • [19] S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta and H. Nakashima, J. Nucl. Sci. Technol. 39, 872 (2002).
  • [20] R. Kasada, H. Takahashi, H. Kishimoto, K. Yutani and A. Kimura, Mater. Sci. Forum 654-656, 2791 (2010).
  • [21] J. Isselin, R. Kasada and A. Kimura, J. Nucl. Sci. Technol. 48(2), 169 (2011).
  • [22] N. Okuda, R. Kasada and A. Kimura, J. Nucl. Mater. 386-388, 974 (2009).
  • [23] H. Kishimoto, R. Kasada, O. Hashitomi and A. Kimura, J. Nucl. Mater. 386-388, 533 (2009).
  • [24] J. Chen, M.A. Pouchon, A. Kimura, P. Jung and W. Hoffelner, J. Nucl. Mater. 386-388, 143 (2009).
  • [25] A. Hasegawa et al., J. Nucl. Mater. 386-388, 241 (2009).
  • [26] A. Kimura et al., J. Nucl. Mater. 307-311, 521 (2002).
  • [27] H.S. Cho, A. Kimura, S. Ukai and M. Fujiwara, J. Nucl. Mater. 329-333, 387 (2004).
  • [28] N.A. Azarenkov et al., Nanostructural materials in the nuclear engineering, J. Kharkiv National Univ., 1041 (2013) p.19-28.
  • [29] A. Kimura et al., J. Nucl. Mater. 417, 176 (2011).
  • [30] R.L. Klueh et al., J. Nucl. Mater. 307-311, 455 (2002).
  • [31] R.L. Klueh et al., J. Nucl. Mater. 341, 103 (2005).
  • [32] T. Yoshitake, Y. Abe, N. Akasaka, S. Ohtsuka, S. Ukai and A. Kimura, J. Nucl. Mater. 329-333, 342 (2004).
  • [33] S. Ohtsuka et al., J. Nucl. Mater. 329-333, 372 (2004).
  • [34] S. Ohtsuka et al., J. Nucl. Mater. 351, 241 (2006).
  • [35] T. Sawazaki et al., J. Nucl. Mater. 442, S169 (2013).
  • [36] A. Steckmeyer, V.H. Rodrigo, J.M. Gentzbittel, V. Rabeau and B. Fournier, J. Nucl. Mater. 426, 182 (2012).
  • [37] S. Ukai, Metal, Ceramic and Polymeric Composites for Various Uses, ed. Cuppoletti, J., Chapter 14 (InTech) ISBN:978-953-307-353-8 (2011).
  • [38] H. Sakasegawa et al., J. Nucl. Mater. 367-370, 185 (2007).
  • [39] S. Ukai et al., J. Nucl. Sci. Technol. 39, 872 (2002).
  • [40] S. Ohtsuka et al., J. Nucl. Mater. 367-370, 160 (2007).
  • [41] H. Sakasegawa et al., J. Nucl. Mater. 373, 82 (2008).
  • [42] S. Ukai et al., J. Nucl. Mater. 367-370, 234 (2007).
  • [43] P. Marmy and T. Kruml, J. Nucl. Mater. 377, 52 (2008).
  • [44] T.S. Byun et al., J. Nucl. Mater. 449, 290 (2014).
  • [45] T.S. Byun et al., J. Nucl. Mater. 407, 78 (2010).
  • [46] J.H. Kim et al., J. Nucl. Mater. 407, 143 (2010).
  • [47] H.S. Cho, A. Kimura, S. Ukai and M. Fujiwara, J. of ASTM International 2(7), 111 (2005).
  • [48] H.S. Cho, H. Ohkubo, N. Iwata, A. Kimura, S. Ukai and M. Fujiwara, Fusion Eng. Des. 81, 1071 (2006).
  • [49] A. Kimura, H.S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai and M. Fujiwara, J. Nucl. Sci. Technol. 44(3), 323 (2007).
  • [50] M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Mel'nychenko and A.S. Kalchenko, J. Nucl. Mater. 453, 323 (2014).
  • [51] H. Takahashi and A. Kimura, unpublished work.
  • [52] S. Ukai et al., J. Nucl. Sci. Technol. 39, 778 (2002).
  • [53] K. Yutani, H. Kishimoto, R. Kasada and A. Kimura, J. Nucl. Mater. 367-370, 423 (2007).
  • [54] M. Enoeda et al., Fusion Eng. Des. 81, 1–7, 415 (2006).
  • [55] I. Kubena et al., J. Nucl. Mater. 424, 101 (2012).
  • [56] H. Hadraba et al., J. Nucl. Mater. 411, 112 (2011).
  • [57] T.R Allen et al., Proc. the 12th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power System, (2005) p.1397-1407.
  • [58] F. Kano et al., Review, No.12, 62 (2004) (in Japanese).
  • [59] A. Kimura, R. Kasada, R. Sugano, A. Hasegawa and H. Matsui, J. Nucl. Mater. 283-287, 827 (2000).
  • [60] B.W. Baker, T.R. McNelley and L.N. Brewer, Mater. Sci. Eng. A 589, 217 (2014).
  • [61] R. Lindau, M. Klimenkov, U. Jäntsch, A. Möslang and L. Commin, J. Nucl. Mater. 416, 22 (2011).
  • [62] H.J.K. Lemmen, J. Mater. Science 42, 5286 (2007).
  • [63] F. Legendre et al., J. Nucl. Mater. 386-388, 537 (2009).
  • [64] S. Noh et al., J. Nucl. Mater. 417, 245 (2011).
  • [65] W.T. Han et al., Science and Technology of Welding and Joining 16, 690 (2011).
  • [66] W. Han et al., Mater. Trans. JIM 53, 390 (2012).
  • [67] Y.D. Chung, H. Fujii, Y. Sun and H. Tanigawa, Mater. Sci. Eng. A 528, 5812 (2011).
  • [68] K. Yabuuchi et al., Mater. Sci. Eng. A 595, 291 (2014).
  • [69] W. Han et al., J. Nucl. Mater. 455, 46 (2014).
  • [70] R.W. Fonda et al., Scr. Mater. 51, 243 (2004).
  • [71] R.W. Fonda et al., Scr. Mater. 58, 343 (2008).
  • [72] W-Han et al., Scr. Mater. 105, 2 (2015).