Plasma and Fusion Research
Volume 11, 2406063 (2016)
Regular Articles
- Sumitomo Heavy Industries, Ltd., Tokyo 141-6025, Japan
- 1)
- Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
- 2)
- High Energy Accelerator Research Organization (KEK), Tsukaba 305-0801, Japan
- 3)
- Fusion Research and Development Directorate, Japan Atomic Energy Agency, Aomori 039-3212, Japan
Abstract
A filament driven multi-cusp negative hydrogen ion source has been developed for proton cyclotrons. In order to increase the H− beam current, the dependences of H− beam current on various design/operating parameters has been studied experimentally and numerically. In this paper, the effects of arc-discharge voltage and current on H− production via the volume production process are investigated by three-dimensional kinetic modeling of electrons in the source plasma and zero-dimensional rate equations. This numerical analysis reproduces the experimental results of H− beam current dependence on the arc-discharge condition, and also gives reasonable explanations for their characteristics.
Keywords
negative hydrogen ion source, medical cyclotron, EEDF, KEIO-MARC code
Full Text
References
- [1] S.R. Walther, K.N. Leung and W.B. Kunkel, J. Appl. Phys. 64, 3424 (1988).
- [2] H. Etoh et al., Rev. Sci. Instrum. 85, 02B107 (2014).
- [3] H. Etoh et al., Rev. Sci. Instrum. 87, 02B135 (2016).
- [4] M. Bacal et al., J. Appl. Phys. 52, 1247 (1981).
- [5] J.M. Wadehra and J. N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978).
- [6] T. Shibata, M. Kashiwagi, T. Inoue, A. Hatayama and M. Hanada, J. Appl. Phys. 114, 143301 (2013).
- [7] I. Fujino, A. Hatayama, N. Takado and T. Inoue, Rev. Sci. Instrum. 79, 02A510 (2008).
- [8] R. Terasaki, I. Fujino, A. Hatayama, T. Mizuno and T. Inoue, Rev. Sci. Instrum. 81, 02A703 (2010).
- [9] J.R. Hiskes, A.M. Karo, M. Bacal, A.M. Bruneteau and W.G. Graham, J. Appl. Phys. 53, 3469 (1982).
- [10] J.R. Hiskes and A.M. Karo, J. Appl. Phys. 56, 7, 1927 (1984).
- [11] J.R. Hiskes, A.M. Karo and P.A. Willmann, J. Appl. Phys. 58, 5, 1759 (1985).
- [12] J. Bretagne, G. Delouya, C. Gorse, M. Capitelli and M. Bacal, J. Appl. Phys. D: Appl. Phys. 18, 811 (1985).
- [13] O. Fukumasa and S. Saeki, J. Phys. D: Appl. Phys. 18, L21 (1985).
- [14] J. Bretagne, G. Delouya, M. Capitelli, C. Gorse and M. Bacal, J. Phys. D: Appl. Phys. 19, 1197 (1986).
- [15] C. Gorse, M. Capitelli, M. Bacal, J. Bretagne and A. Lagana, Chem. Phys. 117, 177 (1987).
- [16] M. Ohmatsu, K. Shimura and M. Ogasawara, "Role of magnetic filter in the tandem type negative ion source," in Proc. 11th Symp. Ion Sources Ion-Assisted Technol., Tokyo, Japan, Jun. 1-3, 1987, pp.183-186.
- [17] O. Fukumasa, J. Phys. D: Appl. Phys. 22, 1668 (1989).
- [18] O. Fukumasa and S. Ohashi, J. Phys. D: Appl. Phys. 22, 1931 (1989).
- [19] M. Ogasawara, M. Ohmatsu, T. Kawamura, K. Shimura and T. Yamakawa, "Modeling of magnetic filter in zerodimensional code for tandem negative ion source," in Proc. 13th Symp. Ion Sources Ion-Assisted Technol., Tokyo, Japan, Jun. 1-3, 1990, pp.83-88.
- [20] M. Bacal, A. Hatayama and J. Peters, IEEE Trans. Plasma Sci. 33, 6, 1845 (2005).
- [21] K.N. Leung, K.W. Ehlers and M. Bacal, Rev. Sci. Instrum. 54, 56 (1983).
- [22] Ansys homepage (2015) (http://www.ansys.com/)
- [23] C.K. Birdsal et al., in Plasma Physics via Computer Simulation, (IOP Publishing, Bristol, 1991), Chap. 2, pp.12-15.
- [24] T. Takizuka et al., J. Comput. Phys. 25, 205 (1977).
- [25] K. Nanbu et al., in Proc. Soviet Union-Japan Symp. Comput. Fuluid Dynamics, (Computing Center of the USSR Academy of Sciences, 1989), Vol.2, pp.126-132.
- [26] R. Celiberto et al., At. Data Nucl. Data Tables 77, 161 (2001).
- [27] R.K. Janev et al., Julich Report No. JUEL-4105, 2003.
- [28] P.T. Grennland et al., Julich Report No. JUEL-3528, 1996.
- [29] C. Courteile et al., Rev. Sci. Instrum. 64, 3265 (1993).