Plasma and Fusion Research

Volume 11, 2406033 (2016)

Regular Articles


Thrust Enhanced by a Magnetic Laval Nozzle in an Applied-Field Magneto-Plasma-Dynamic Thruster
Hiroaki NABUCHI, Kiyotaka SUZUKI, Yohei KOBAYASHI, Atsushi KOMURO, Kazunori TAKAHASHI and Akira ANDO
Department of Electrical Engineering, School of Engineering, Tohoku University, 6-6-05 Aoba-yama, Sendai 980-8579, Japan
(Received 30 November 2015 / Accepted 1 February 2016 / Published 15 April 2016)

Abstract

The thrust imparted by an applied-field magneto-plasma-dynamic thruster is enhanced by superimposing a convergent-divergent magnetic field called a magnetic Laval nozzle. The thrust increases up to 6.9 N by increasing the magnetic field strength at the Laval nozzle throat. It is observed that the plasma flow velocity increases and the ion temperature simultaneously decreases downstream of the throat. A major component of the measured Lorentz force arising from the plasma-induced current is identified to be in the radial direction, while a significant increase in the plasma density is observed upstream of the nozzle. These results imply that the plasma pressure increases upstream of the magnetic Laval nozzle due to an inhibition of the plasma loss, which contributes to the increase of the thrust.


Keywords

Magneto-Plasma-Dynamic (MPD) thruster, magnetic Laval nozzle, high-density plasma, electric propulsion

DOI: 10.1585/pfr.11.2406033


References

  • [1] K. Dannenmayer and S. Mazouffre, J. Propul. Power 27, 236 (2011).
  • [2] D.M. Goebel and I. Katz, Fundamentals of electric propulsion: ion and hall thrusters (John Wiley & Sons, Inc., publication 2008).
  • [3] B.W. Longmier et al., J. Propul. Power 27, 4 (2011).
  • [4] R.M. Myers, J. Propul. Power 9, 5 (1993).
  • [5] K. Sankaran et al., J. Propul. Power 21, 1 (2005).
  • [6] C. Charles, J. Phys. D: Appl. Phys. 42, 163001 (2009).
  • [7] K. Takahashi et al., Phys. Rev. Lett. 110, 195003 (2013).
  • [8] I. Funaki et al., J. Propul. Power 14, 6 (1998).
  • [9] A. Sasoh et al., J. Propul. Power 11, 351 (1995).
  • [10] A. Fruchutman, Phys. Rev. Lett. 96, 065002 (2006).
  • [11] K. Takahashi et al., Phys. Rev. Lett. 107, 235001 (2011).
  • [12] A.V. Areviev and B.N. Breizmann, Phys. Plasmas 12, 043504 (2005).
  • [13] E. Ahedo and M. Merino, Phys. Plasmas 17, 073501 (2010).
  • [14] A. Sasoh, Phys. Plasmas 1, 3 (1994).
  • [15] Y. Izawa et al., JPS Conf. Proc. 1, 015046 (2014).
  • [16] A. Fruchtman et al., Phys. Plasmas 19, 0333507 (2012).
  • [17] M. Inutake et al., Plasma Phys. Control. Fusion 49, A121 (2007).
  • [18] H. Tobari et al., Phys. Plasmas 14, 093507 (2007).
  • [19] Y. Takao et al., J. Appl. Phys. 101, 123307 (2007).