Plasma and Fusion Research

Volume 11, 2405114 (2016)

Regular Articles


New Proposal on the Development of Machine Protection Functions for ITER Diagnostics Control
Tsuyoshi YAMAMOTO1,2), Eiichi YATSUKA1), Takaki HATAE1), Kazuya OTA2), Yasunori HASHIMOTO2), Kitaru NAKAMURA2), Tatsuo SUGIE3), Masaki TAKEUCHI1), Sin-iti KITAZAWA1), Hiroaki OGAWA1), Yasunori KAWANO1) and Kiyoshi ITAMI1)
1)
Japan Atomic Energy Agency, Naka-shi, Ibaraki 311-0193, Japan
2)
Japan Expert Clone Corporation, Shinjuku-ku, Tokyo 160-0022, Japan
3)
Nippon Advanced Technology Co. Ltd., Tokai-mura, Ibaraki 319-1112, Japan
(Received 30 November 2015 / Accepted 25 August 2016 / Published 5 October 2016)

Abstract

There is a need to develop ITER instrumentation and control (I&C) systems with high reliabilities. Interlock systems that activate machine protection functions are implemented on robust wired-logic systems such as programmable logic controllers (PLCs). We herein propose a software tool that generates program code templates for the control systems using PLC logic. This tool decreases careless mistakes by developers and increases reliability of the program codes. A large-scale engineering database has been implemented in the ITER project. To derive useful information from this database, we propose adding semantic data to it using the Resource Description Framework format. In our novel proposal for the ITER diagnostic control system, a guide words generator that analyzes the engineering data by inference is applied to the hazard and operability study. We validated the methods proposed in this paper by applying them to the preliminary design for the I&C system of the ITER edge Thomson scattering system.


Keywords

ITER, machine protection, inference, program code template, HAZOP

DOI: 10.1585/pfr.11.2405114


References

  • [1] S. Kitazawa et al., Fusion Eng. Des. 89, 88 (2014).
  • [2] A. Wallander et al., Fusion Eng. Des. 85, 529 (2010).
  • [3] E. Yatsuka et al., J. Instrumentation 8, C12001 (2013).
  • [4] L. Abadie et al., Fusion Eng. Des. 87, 2213 (2012).
  • [5] J. Sonara et al., Fusion Eng. Des. 96-97, 957 (2015).
  • [6] Y. Kitamura et al., Trans. Jpn. Soc. Artificial Intelligence 17, 61 (2002).
  • [7] Y. Kitamura et al., Trans. Jpn. Soc. Artificial Intelligence 17, 73 (2002).
  • [8] T. Kletz, Hazop & Hazan: Identifying and Assessing Process Industry Hazards, 4th edition (Institute of Chemical Engineers, Rugby UK, 1999).
  • [9] IEC 61131-3: 2013. Programmable controllers-Part 3: Programming languages.
  • [10] Extensible Markup Language (XML), https://www.w3.org/XML/
  • [11] T. Yamamoto et al., Fusion Eng. Des. 96-97, 1012 (2015).
  • [12] Experimental Physics and Industrial Control System, http://www.aps.anl.gov/epics/
  • [13] Resource Description Framework (RDF), http://www.w3.org/RDF/
  • [14] T. Hatae et al., Rev. Sci. Instrum. 83, 10E344 (2012).
  • [15] cwm, http://www.w3.org/2000/10/swap/doc/cwm.html