Plasma and Fusion Research

Volume 11, 2405112 (2016)

Regular Articles


Nitrogen Hot Trap Design and Manufactures for Lithium Test Loop in IFMIF/EVEDA Project
Eiichi WAKAI1), Kazuyoshi WATANABE1), Yuzuru ITO1), Akihiro SUZUKI2), Takayuki TERAI2), Juro YAGI3), Hiroo KONDO1), Takuji KANEMURA1), Tomohiro FURUKAWA1), Yasushi HIRAKAWA1), Friedrich GROESCHEL4), Hiroshi TANAKA1), Koichi NAKANIWA1), Kouji FUJISHIRO1,4) and Haruyuki KIMURA1)
1)
Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
2)
University of Tokyo, Tokyo 113-8654, Japan
3)
National Institute for Fusion Science, Gifu 509-5292, Japan
4)
IFMIF/EVEDA Project Team, Aomori 039-3212, Japan
(Received 1 December 2015 / Accepted 18 August 2016 / Published 5 October 2016)

Abstract

The lithium target facility of IFMIF (International Fusion Materials Irradiation Facility) consists of target assembly, lithium main loop, lithium purification loops, the diagnostic systems, and remote handling system. Major impurities in the lithium loop are proton, deuterium, tritium, 7-Be, activated corrosion products and the other species (C, N, O). It is very important to remove nitrogen content in lithium loop during operation, in order to avoid the corrosion/erosion of the nozzle of lithium target for the stable lithium flow on the target assembly. Nitrogen in the lithium can be removed by N hot trap using Fe-5%Ti alloy at temperatures from 400 to 600 °C. In this study, the specification and the detailed design were evaluated, and the component of N hot trap system was fabricated.


Keywords

IFMIF, IFMIF/EVEDA project, Li purification, nitrogen hot trap, Fe-Ti alloy

DOI: 10.1585/pfr.11.2405112


References

  • [1] S. Matsuda, Fusion Eng. Des. 82, 435 (2007).
  • [2] T. Nishitani et al., Fusion Eng. Des. 88, 422 (2013).
  • [3] M. Araki et al., Fusion Eng. Des. 85, 2196 (2010).
  • [4] P. Garin and M. Sugimoto, J. Nucl. Mater. 417, 1262 (2011).
  • [5] J. Knaster et al., Nucl. Fusion 53, 116011 (2013).
  • [6] T. Fujita et al., Nucl. Fusion 47, 1512 (2007).
  • [7] M. Ida et al., Fusion Eng. Des. 70, 95 (2004).
  • [8] E. Wakai et al., Fusion Sci. Technol. 66, 46 (2014).
  • [9] E. Wakai et al., J. Plasma Fusion Res. 88, 691 (2012).
  • [10] H. Nakamura et al., Fusion Eng. Des. 83, 1007 (2008).
  • [11] K. Natesan, J. Nucl. Mater. 115, 251 (1983).
  • [12] J. Yagi et al., Fusion Eng. Des. 86, 2678 (2011).
  • [13] T. Furukawa et al., Fusion Eng. Des. 89, 2902 (2014).
  • [14] J. Yagi et al., J. Nucl. Mater. 417, 710 (2011).
  • [15] S. Hirakane et al., Fusion Eng. Des. 75, 721 (2005).
  • [16] S. Hirakane et al., Fusion Eng. Des. 81, 665 (2006).
  • [17] H. Kondo et al., Fusion Eng. Des. 86, 2437 (2011).
  • [18] H. Kondo et al., Nucl. Fusion 51, 123008 (2011).
  • [19] S. Hirakane et al., Fusion Eng. Des. 75, 721 (2005).
  • [20] S. Hirakane et al., Fusion Eng. Des. 81, 665 (2006).
  • [21] T. Furukawa et al., Fusion Eng. Des. 98-99, 2138 (2015).
  • [22] T. Kanemura et al., Fusion Eng. Des. 89, 1642 (2014).
  • [23] J. Knaster et al., Fusion Eng. Des. 89, 1709 (2014).
  • [24] K. Esaki et al., J. Plasma Fusion Res. SERIES 11, 36 (2015).
  • [25] P. Favuzza et al., Fusion Eng. Des. 107, 13 (2016).
  • [26] K. Hiyane et al., Fusion Eng. Des. 109-111, 1340 (2016).
  • [27] E. Wakai et al., Nucl. Mater. Energy (2016), in press.