Plasma and Fusion Research
Volume 11, 2405112 (2016)
Regular Articles
- 1)
- Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
- 2)
- University of Tokyo, Tokyo 113-8654, Japan
- 3)
- National Institute for Fusion Science, Gifu 509-5292, Japan
- 4)
- IFMIF/EVEDA Project Team, Aomori 039-3212, Japan
Abstract
The lithium target facility of IFMIF (International Fusion Materials Irradiation Facility) consists of target assembly, lithium main loop, lithium purification loops, the diagnostic systems, and remote handling system. Major impurities in the lithium loop are proton, deuterium, tritium, 7-Be, activated corrosion products and the other species (C, N, O). It is very important to remove nitrogen content in lithium loop during operation, in order to avoid the corrosion/erosion of the nozzle of lithium target for the stable lithium flow on the target assembly. Nitrogen in the lithium can be removed by N hot trap using Fe-5%Ti alloy at temperatures from 400 to 600 °C. In this study, the specification and the detailed design were evaluated, and the component of N hot trap system was fabricated.
Keywords
IFMIF, IFMIF/EVEDA project, Li purification, nitrogen hot trap, Fe-Ti alloy
Full Text
References
- [1] S. Matsuda, Fusion Eng. Des. 82, 435 (2007).
- [2] T. Nishitani et al., Fusion Eng. Des. 88, 422 (2013).
- [3] M. Araki et al., Fusion Eng. Des. 85, 2196 (2010).
- [4] P. Garin and M. Sugimoto, J. Nucl. Mater. 417, 1262 (2011).
- [5] J. Knaster et al., Nucl. Fusion 53, 116011 (2013).
- [6] T. Fujita et al., Nucl. Fusion 47, 1512 (2007).
- [7] M. Ida et al., Fusion Eng. Des. 70, 95 (2004).
- [8] E. Wakai et al., Fusion Sci. Technol. 66, 46 (2014).
- [9] E. Wakai et al., J. Plasma Fusion Res. 88, 691 (2012).
- [10] H. Nakamura et al., Fusion Eng. Des. 83, 1007 (2008).
- [11] K. Natesan, J. Nucl. Mater. 115, 251 (1983).
- [12] J. Yagi et al., Fusion Eng. Des. 86, 2678 (2011).
- [13] T. Furukawa et al., Fusion Eng. Des. 89, 2902 (2014).
- [14] J. Yagi et al., J. Nucl. Mater. 417, 710 (2011).
- [15] S. Hirakane et al., Fusion Eng. Des. 75, 721 (2005).
- [16] S. Hirakane et al., Fusion Eng. Des. 81, 665 (2006).
- [17] H. Kondo et al., Fusion Eng. Des. 86, 2437 (2011).
- [18] H. Kondo et al., Nucl. Fusion 51, 123008 (2011).
- [19] S. Hirakane et al., Fusion Eng. Des. 75, 721 (2005).
- [20] S. Hirakane et al., Fusion Eng. Des. 81, 665 (2006).
- [21] T. Furukawa et al., Fusion Eng. Des. 98-99, 2138 (2015).
- [22] T. Kanemura et al., Fusion Eng. Des. 89, 1642 (2014).
- [23] J. Knaster et al., Fusion Eng. Des. 89, 1709 (2014).
- [24] K. Esaki et al., J. Plasma Fusion Res. SERIES 11, 36 (2015).
- [25] P. Favuzza et al., Fusion Eng. Des. 107, 13 (2016).
- [26] K. Hiyane et al., Fusion Eng. Des. 109-111, 1340 (2016).
- [27] E. Wakai et al., Nucl. Mater. Energy (2016), in press.