Plasma and Fusion Research

Volume 11, 2405078 (2016)

Regular Articles


Modification of Neutron Emission Spectra and Determination of Fuel Ion Ratio in Beam-Injected Deuterium–Tritium Plasma
Yasuko KAWAMOTO and Hideaki MATSUURA
Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
(Received 1 December 2015 / Accepted 1 February 2016 / Published 30 June 2016)

Abstract

To stably control and operate a deuterium–tritium (DT) fusion reactor, it is important to accurately obtain the fuel ion ratio nt/nd (n is the number density). Previously, fuel ion ratio diagnostic methods using deuterium–deuterium (DD) and DT neutron emission rates have been studied. The reaction rate coefficients and neutron emission spectra, i.e., the shape and peak value, are strongly influenced by external plasma heating such as neutron beam injection (NBI) heating. In this paper, we consider the fuel ion ratio diagnostics by directly measuring the neutron emission spectra, including both beam–thermal and beam–beam fusion reactions, in deuterium beam-injected DT plasma. We also evaluate the slowing-down neutron component, i.e., noise, to examine whether the above method can be used for plasma diagnostics. On the basis of Boltzmann–Fokker–Planck and Monte Carlo neutron transport analyses, the applicability of the method to the beam-injected DT plasma is discussed. It is shown that the feasible plasma parameter regions of measuring for fuel ion ratio diagnostics is increased by beam injection and by adopting neutron detector channels shifted to the high-energy side.


Keywords

fuel ion ratio diagnostics, fusion blanket, neutron spectrometry, NBI, neutron transport simulation

DOI: 10.1585/pfr.11.2405078


References

  • [1] J. Källne et al., Rev. Sci. Instrum. 62, 2871 (1991).
  • [2] G. Lehner and F. Pohl, Zeitschrift für Physik 207, 83 (1967).
  • [3] F. Moro et al., Fusion Eng. Des. 86, 1277 (2011).
  • [4] V.G. Kiptily, Nucl. Fusion 55, 023008 (2015).
  • [5] G. Ericsson et al., Rev. Sci. Instrum. 81, 10D324 (2010).
  • [6] C. Hellesen et al., Rev. Sci. Instrum. 83, 10D916 (2012).
  • [7] C. Hellesen et al., Nucl. Fusion 55, 023005 (2015).
  • [8] H. Matsuura et al., Phys. Plasma 13, 062507 (2006).
  • [9] J.J. Devaney et al., Nucl. Sci. Rng. 46, 323 (1971).
  • [10] S.T. Perkins et al., Nucl. Sci. Eng. 20, 77 (1981).
  • [11] E. Bittoni et al., Nucl. Fusion 29, 931 (1980).
  • [12] H. Matsuura et al., Plasma Phys. Control. Fusion 53, 035023 (2011).
  • [13] H. Brysk, Plasma Phys. 15, 611 (1973).
  • [14] H.S. Bosch and G.M. Hale, Nucl. Fusion 32, 611 (1992).
  • [15] M.E. Swan et al., Proceedings of the 22nd IEEE / NPSSS symposium on Fusion Engineering, Albuquerque, NM, June 17-21, 1 (2007).
  • [16] Y. Nagaya et al., JAERI 1348 (2005).
  • [17] K. Shibata el al., J. Nucl. Sci. Technol. 39, 1125 (2002).
  • [18] T. Nishitani et al., J. Plasma Fusion Res. 80, 860 (2004) (in Japanese).
  • [19] R. Hemsworth et al., Nucl. Fusion 49, 045006 (2009).