Plasma and Fusion Research

Volume 11, 2403011 (2016)

Regular Articles


Benchmark of Electromagnetic Gyrokinetic Codes in High Performance Fusion Plasma
Shinya MAEYAMA, Tomo-Hiko WATANABE, Hauke DOERK1), Motoki NAKATA2) and Akihiro ISHIZAWA3)
Nagoya University, Furo-cho, Nagoya 464-8602, Japan
1)Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
2)National Institute for Fusion Science, 322-6 Toki, Gifu 509-5292, Japan
3)Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
(Received 10 November 2015 / Accepted 18 December 2015 / Published 24 February 2016)

Abstract

Benchmark between electromagnetic gyrokinetic codes GKV and GENE based on the flux tube model has been carried out by employing the high performance tokamak experiment data. The constructed flux coordinates, linear dispersion relation, and nonlinear turbulent transport show good agreements. Utilizing these codes, linear mode structures of micro-tearing modes have been examined. It is found that the current density is highly localized in the radial direction and peaks on the inner board side of the torus, while the broaden O-shape structure is observed on the torus outer board side. This broadening originates from the magnetic drift, that is, the finite orbit width of passing particles.


Keywords

gyrokinetics, finite β effect, ion temperature gradient mode, micro-tearing mode, Vlasov simulation

DOI: 10.1585/pfr.11.2403011


References

  • [1] R.D. Hazeltine, D. Dobrott and T.S.Wang, Phys. Fluids 18, 1778 (1975).
  • [2] J.F. Drake and Y.C. Lee, Phys. Fluids 20, 1341 (1977).
  • [3] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006).
  • [4] F. Jenko et al., Phys. Plasmas 7, 1904 (2000).
  • [5] H. Doerk et al., Phys. Plasmas 22, 042503 (2015).
  • [6] S. Maeyama et al., Comput. Phys. Commun. 184, 2462 (2013).
  • [7] A. Ishizawa et al., Nucl. Fusion 53, 053007 (2013).
  • [8] M. Nunami, T.-H. Watanabe and H. Sugama, Plasma Fusion Res. 5, 016 (2010).
  • [9] M. Nakata et al., Plasma Fusion Res. 9, 1403029 (2014).
  • [10] M. Nunami et al., Plasma Fusion Res. 10, 1403058 (2015).
  • [11] M. Nakata et al., Comput. Phys. Commun. 197, 61 (2015).
  • [12] T. Görler et al., J. Comput. Phys. 230, 7053 (2011).
  • [13] M.A. Beer et al., Phys. Plasmas 2, 2687 (1995).
  • [14] P. Xanthopoulos and F. Jenko, Phys. Plasmas 13, 092301 (2006).
  • [15] H. Sugama et al., Plasma Phys. Control. Fusion 53, 024004 (2011).
  • [16] H. Sugama, T.-H.Watanabe and M. Nunami, Phys. Plasmas 16, 112503 (2009).
  • [17] H. Doerk, Ph.D. Dissertation Universität Ulm, 2012.
  • [18] N.T. Gladd et al., Phys. Fluids 23, 1182 (1980).
  • [19] J.W. Connor, S.C. Cowley and R.J. Hastie, Plasma Phys. Control. Fusion 32, 799 (1990).
  • [20] M. Kotschenreuther, G. Rewoldt and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995).
  • [21] D.J. Applegate et al., Plasma Phys. Control. Fusion 49, 1113 (2007).
  • [22] D. Dickinson et al., Plasma Phys. Control. Fusion 55, 074006 (2013).
  • [23] H. Doerk et al., Phys. Plasmas 19, 055907 (2012).