Plasma and Fusion Research

Volume 11, 2402111 (2016)

Regular Articles


Observation of Electron Density Fluctuations by Using the O-Mode Microwave Imaging Reflectometry (O-MIR) in LHD
Yoshio NAGAYAMA1,2), Soichiro YAMAGUCHI3), Zongbing SHI4), Hayato TSUCHIYA1), Shigehiro HASHIMOTO1), Naoki ITO5), Min JIANG3), Daisuke KUWAHARA6) and Shoji SUGITO7)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, Toki 509-5292, Japan
3)
Kansai University, Suita 564-8680, Japan
4)
Southwestern Institute of Physics, Chengdu 610041, China
5)
National Institute of Technology, Ube College, Ube 755-8555, Japan
6)
Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
7)
The Institute for Molecular Science, Okazaki 444-8585, Japan
(Received 30 November 2015 / Accepted 16 June 2016 / Published 16 September 2016)

Abstract

The O-mode microwave imaging reflectometry (O-MIR) has been developed. The frequency is 26 - 34 GHz, which corresponds to the cutoff electron density of 0.8 - 1.5 × 1019 m−3. Since the local wave of the newly developed horn antenna millimeter wave imaging device (HMID) is fed by coaxial cable, the optical system of O-MIR is significantly simplified. By using O-MIR, the edge electron density fluctuation in an H-mode plasma is observed in LHD. The spectrum in the wave number and the frequency (k - ω) space is obtained by using the two-point correlation analysis. In the H-mode plasma the fluctuation amplitude is higher and the k - ω spectrum has the feature of the drift wave.


Keywords

microwave, imaging, reflectometry, diagnostics, plasma, LHD, helical, electron density, fluctuation

DOI: 10.1585/pfr.11.2402111


References

  • [1] E. Mazzucato, Nucl. Fusion 41, 203 (2001).
  • [2] S. Yamaguchi, Y. Nagayama, R. Pavlichenko, S. Inagaki, Y. Kogi and A. Mase, Rev. Sci. Instrum. 77, 10E930 (2006).
  • [3] S. Yamaguchi, Y. Nagayama, Z. Shi, R. Pavlichenko, S. Inagaki et al., Plasma Fusion Res. 2, S1038 (2007).
  • [4] S. Yamaguchi, Y. Nagayama, D. Kuwahara, T. Yoshinaga, Z.B. Shi et al., Rev. Sci. Instrum. 79, 10F111 (2008).
  • [5] D. Kuwahara, S. Tsuji-Iio, Y. Nagayama, T. Yoshinaga, Z. Shi et al., J. Plasma Fusion Res. SERIES 8, 649 (2009).
  • [6] D. Kuwahara, S. Tsuji-Iio, Y. Nagayama, T. Yoshinaga, Z. Shi et al., J. Plasma Fusion Res. SERIES 9, 125 (2010).
  • [7] D. Kuwahara, S. Tsuji-Iio, Y. Nagayama, T. Yoshinaga, H. Tsuchiya et al., Rev. Sci. Instrum. 81, 10D919 (2010).
  • [8] T. Yoshinaga, Y. Nagayama, D. Kuwahara, H. Tsuchiya et al., Rev. Sci. Instrum. 81, 10D915 (2010).
  • [9] T. Yoshinaga, D. Kuwahara, Y. Nagayama, H. Tsuchiya, S. Yamaguchi et al., Plasma Fusion Res. 5, 030 (2010).
  • [10] Y. Nagayama, D. Kuwahara, T. Yoshinaga, Y. Hamada, Y. Kogi et al., Rev. Sci. Instrum. 83, 10E305 (2012).
  • [11] Z. Shi, Y. Nagayama, D. Kuwahara, T. Yoshinaga, M. Sugito et al., J. Plasma Fusion Res. SERIES 8, 0109 (2009).
  • [12] D. Kuwahara, N. Ito, Y. Nagayama, T. Yoshinaga, S. Yamaguchi et al., Rev. Sci. Instrum. 85, 11D805 (2014).
  • [13] Z.B. Shi, Y. Nagayama, S. Yamaguchi, Y. Hamada and Y. Hirano, Plasma Fusion Res. 3, S1045 (2008).
  • [14] Z.B. Shi, Y. Nagayama, S. Yamaguchi, D. Kuwahara, T. Yoshinaga et al., Plasma Fusion Res. 5, S1019 (2010).
  • [15] Z.B. Shi, Y. Nagayama, S. Yamaguchi, T. Yoshinaga, D. Kuwahara et al., J. Plasma Fusion Res. SERIES 9, 054 (2010).
  • [16] Z.B. Shi, Y. Nagayama, S. Yamaguchi, D. Kuwahara, T. Yoshinaga et al., Phys. Plasmas 18, 102315 (2011).
  • [17] K. Kamiya, K. Ida, M. Yoshinuma, C. Suzuki, Y. Suzuki et al., Nucl. Fusion 53, 013003 (2013).