Plasma and Fusion Research

Volume 11, 2402059 (2016)

Regular Articles


Helium Volumetric Recombining Plasma Formation for Energetic Ion Injection in Radio-Frequency Plasma Device DT-ALPHA
Hiroyuki TAKAHASHI, Atsushi OKAMOTO1), Takatsugu MIURA, Daiki NAKAMURA, Peerapat BOONYARITTIPONG, Shuhei SEKITA and Sumio KITAJIMA
Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
1)
Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603, Japan
(Received 30 November 2015 / Accepted 11 March 2016 / Published 10 June 2016)

Abstract

The spatial distribution of helium volumetric recombination in a radio-frequency (RF) plasma device was investigated in two different plasma production cases. It was revealed that the radial distribution of volumetric recombination was strongly localized in the peripheral region of a cylindrical plasma at a higher RF heating power and lower neutral pressure case. In contrast, volumetric recombination was widely distributed around the plasma column at a lower RF heating power and higher neutral pressure. To understand helium recombining plasma formation, the electron-ion temperature relaxation time was evaluated for each plasma production case. The electron-ion temperature relaxation time in the gas puffing region becomes much smaller than the plasma confinement time in the latter plasma production case, whereas it is much larger than the plasma confinement time in the former plasma production case. This result indicates that energy transfer from electrons to bulk ions plays an important role in helium recombining plasma formation in an RF plasma device.


Keywords

divertor, helium plasma, volumetric recombination, energetic ion injection, electron-ion energy transfer

DOI: 10.1585/pfr.11.2402059


References

  • [1] W.L. Hsu, M. Yamada and P.J. Barrett, Phys. Rev. Lett. 49, 1001 (1982).
  • [2] N. Ohno, D. Nishijima, S. Takamura, Y. Uesugi, M. Motoyama, N. Hattori, H. Arakawa, N. Ezumi, S. Krasheninnikov, A. Pigarov and U. Wenzel, Nucl. Fusion 41, 1055 (2001).
  • [3] Y. Uesugi, N. Hattori, D. Nishijima, N. Ohno and S. Takamura, J. Nucl. Mater. 290-293, 1134 (2001).
  • [4] A. Okamoto, H. Takahashi, S. Kitajima and M. Sasao, Plasma Fusion Res. 6, 1201153 (2011).
  • [5] A. Okamoto, H. Takahashi, Y. Kawamura, A. Daibo, T. Kumagai, S. Kitajima and M. Sasao, Plasma Fusion Res. 7, 2401018 (2012).
  • [6] H. Takahashi, A. Okamoto, Y. Kawamura, T. Kumagai, A. Daibo and S. Kitajima, Fusion Sci. Technol. 63, 404 (2013).
  • [7] A. Daibo, A. Okamoto, H. Takahashi, T. Kumagai, T. Takahashi, S. Tsubota and S. Kitajima, Rev. Sci. Instrum. 85, 02B307 (2014).
  • [8] H. Takahashi, A. Okamoto, T. Takahashi and S. Kitajima, Fusion Sci. Technol. 68, 190 (2015).
  • [9] A. Okamoto, K. Iwazaki, T. Isono, T. Kobuchi, S. Kitajima and M. Sasao, Plasma Fusion Res. 3, 059 (2008).
  • [10] T. Fujimoto, J. Quant. Spectrosc. Rdiat. Transfer 21, 439 (1979).
  • [11] M. Goto, J. Quant. Spectrosc. Rdiat. Transfer 76, 331 (2003).
  • [12] N. Ezumi, N. Ohno, K. Aoki, D. Nishijima and S. Takamura, Contrib. Plasma Phys. 38, 31 (1998).
  • [13] E. M. Hollmann, C. Brandt, B. Hudson, D. Kumar, D. Nishijima and A. Yu. Pigarov, Phys. Plasmas 20, 093303 (2013).
  • [14] N. Ezumi, S. Mori, N. Ohno, M. Takagi, S. Takamura, H. Suzuki and J. Park, J. Nucl. Mater. 241-243, 349 (1997).
  • [15] D. Nishijima, N. Ezumi, K. Aoki, N. Ohno and S. Takamura, Contrib. Plasma Phys. 38, 55 (1998).
  • [16] T. Kumagai, A. Okamoto, H. Takahashi, A. Daibo, T. Takahashi, S. Tsubota and S. Kitajima, JPS Conf. Proc. 1, 015043 (2014).