Plasma and Fusion Research
Volume 11, 2401080 (2016)
Regular Articles
- 1)
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- 2)
- Nagoya University, Toki, Gifu 509-5292, Japan
- 3)
- National Institute of Technology, Kushiro College, Kushiro, Hokkaido 084-0916, Japan
Abstract
Using the binary-collision approximation simulation with atomic collision in any structured target code AC∀T, we calculated sputtering yield, range, and retention rate for tungsten with a rough surface under argon atom irradiation. The simulation revealed the sputtering yield decreases and the retention rate increases as the surface becomes rougher. Because these quantities strongly depend on the surface, we suggest that it is necessary to consider the surface structure of the tungsten target when estimating the effects of walls.
Keywords
binary collision approximation, sputtering yield, fuzz structure, tungsten, argon, irradiation, range, retention rate, surface structure
Full Text
References
- [1] H. Iwakiri, K. Yasunaga, K. Morishita and N. Yoshida, J. Nucl. Mater. 283-287, 1134 (2000).
- [2] D. Nishijima, M.Y. Ye, N. Ohno and S. Takamura, J. Nucl. Mater. 329-333, 1024 (2004).
- [3] S. Takamura, N. Ohno, D. Nishijima and S. Kajita, Plasma Fusion Res. 1, 051 (2006).
- [4] S. Kajita, T. Saeki, Y. Hirahata, M. Yajima, H. Phno, R. Yoshihara and N. Yoshida, Jpn. J. Appl. Phys. 50, 08JG01 (2011).
- [5] S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida and T. Saeki, Nucl. Fusion 49, 095005 (2009).
- [6] S. Yajima, M. Yamagiwa, S. Kajita, N. Ohno, M. Tokitani, A. Takayama, S. Saito, A.M. Ito, H. Nakamura and N. Yoshida, J. Plasma Sci. Technol. 15, 282 (2013).
- [7] S.I. Krasheninnikov, Phys. Scr. T145, 014040 (2011).
- [8] A.M. Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata, N. Ohno, S. Kajita, M. Yajima, Y. Noiri, Y. Yoshimoto, S. Saito, S. Takamura, T. Murashima, M. Miyamoto and H. Nakamura, J. Nucl. Mater. 463, 109 (2015).
- [9] A.M. Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata, N. Ohno, S. Kajita, M. Yajima, Y. Noiri, Y. Yoshimoto, S. Saito, S. Takamura, T. Murashima, M. Miyamoto and H. Nakamura, Nucl. Fusion 55, 073013 (2015).
- [10] D. Nishijima, M.J. Baldwin, R.P. Doerner and J.H. Yu, J. Nucl. Mater. 415, S96 (2011).
- [11] M.T. Robinson and I.M. Torrens, Phys. Rev. B 9, 5008 (1974).
- [12] J.P. Biersack and W. Eckstein, Appl. Phys. A 34, 73 (1984).
- [13] Y. Yamamura and Y. Mizuno, IPPJ-AM-40, Inst. Plasma Phys., Nagoya University, 1985, (http://dpc.nifs.ac.jp/IPPJAM/IPPJ-AM-40.pdf).
- [14] Y. Yamamura, I. Yamada and T. Takagi, Nucl. Instrum. Methods Phys. Res. Sect. B 37-38, 902 (1989).
- [15] K. Ohya and R. Kawakami, Jpn. J. Appl. Phys. 40, 5424 (2001).
- [16] A. Takayama, S. Saito, A.M. Ito, T. Kenmotsu and H. Nakamura, Jpn. J. Appl. Phys. 50, 01AB03 (2011).
- [17] S. Saito, A. Takayama, A.M. Ito and H. Nakamura, Proc. Int. Conf. Model. Simulation Technol., 197 (2011).
- [18] S. Saito, A.M. Ito, A. Takayama and H. Nakamura, J. Nucl. Mat. Suppl. 438, S895 (2013).
- [19] H. Nakamura et al., ISPlasma 2014, 06aP06.
- [20] M.M. Bredov, I.G. Lang and N.M. Okuneva, Zh. Tekh. Fiz. 28, 252 (1958).
- [21] M.M. Bredov, I.G. Lang and N.M. Okuneva, Sov. Phys.-Tech. Phys. 3, 228 (1958).
- [22] G. Moliere, Z. Naturforsch. A2, 133 (1947) (in German).