Plasma and Fusion Research

Volume 11, 2401009 (2016)

Regular Articles


Self-Organization and Heating by Inward Diffusion in Magnetospheric Plasmas
Naoki SATO, Zensho YOSHIDA and Yohei KAWAZURA
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
(Received 22 October 2015 / Accepted 19 January 2016 / Published 24 February 2016)

Abstract

Through the process of inward diffusion, a strongly localized clump of plasma is created in a magnetosphere. The creation of the density gradient, instead of the usual flattening by a diffusion process, can be explained by the topological constraints given by the adiabatic invariants of magnetized particles [Z. Yoshida and S.M. Mahajan, Prog. Theor. Exp. Phys. 2014, 073J01 (2014). N. Sato and Z. Yoshida, J. Phys. A: Math. Theor. 48, 205501 (2015).]. After developing a canonical formalism for the standard guiding center dynamics in a dipole magnetic field, we complete our attempt to build a statistical mechanics on a constrained phase space by discussing the construction principles of the associated diffusion operator. We then investigate the heating mechanism associated with inward diffusion: as particles move toward regions of higher magnetic field, they experience preferential heating of the perpendicular (with respect to the magnetic field) temperature in order to preserve the magnetic moment. A relationship between conservation of bounce action and temperature isotropy emerged. We further show that this behavior is scaled by the diffusion parameter of the Fokker-Planck equation. These results are confirmed by numerical simulations.


Keywords

inward diffusion, heating, anistropy, phase space foliation, Fokker-Planck equation

DOI: 10.1585/pfr.11.2401009


References

  • [1] J.W. Warwick et al., Science 212, 239 (1981).
  • [2] F.L. Scarf et al., Science 215, 587 (1982).
  • [3] D.A. Gurnett et al., Space Sci. Rev. 114, 395 (2004).
  • [4] T.J. Birmingham et al., Phys. Fluids 10, 11 (1967).
  • [5] M. Schulz and L.J. Lanzerotti, Particle Diffusion in the Radiation Belts (Springer, New York, 1974).
  • [6] Z. Yoshida et al., Phys. Rev. Lett. 104, 235004 (2010).
  • [7] A.C. Boxer et al., Nature Physics 6, 207 (2010).
  • [8] Z. Yoshida and S.M. Mahajan, Prog. Theor. Exp. Phys. 2014, 073J01 (2014).
  • [9] Z. Yoshida et al., Plasma Phys. Control. Fusion 55, 014018 (2013).
  • [10] N. Sato et al., Phys. Plasmas 22, 042508 (2015).
  • [11] N. Sato and Z. Yoshida, J. Phys. A: Math. Theor. 48, 205501 (2015).
  • [12] J.R. Cary and A.J. Brizard, Rev. Mod. Phys. 81, 693 (2009).
  • [13] A.M. Bloch et al., Notices of the AMS 52, 3 (2005).
  • [14] A.J. Van Der Shaft and B.M. Maschke, Rep. Math. Phys. 34, 2 (1994).
  • [15] L. Bates and J. Sniatycki, Rep. Math. Phys. 32, 1 (1993).
  • [16] A. Hasegawa et al., Nucl. Fusion 30, 2405 (1990).
  • [17] A Hasegawa, Physica Scripta T116, 72 (2005).
  • [18] T.S. Pedersen et al., J. Phys. B: At. Mol. Opt. Phys. 36, 1029 (2003).
  • [19] X. Garbet et al., Phys. Rev. Lett. 91, 035001 (2003).
  • [20] G.T. Hoang et al., Phys. Rev. Lett. 90, 155002 (2003).
  • [21] A.M. Persoon et al., J. Geophys. Res. 114, A04211 (2009).
  • [22] A.M. Persoon et al., J. Geophys. Res.: Space Phys. 118, 2970 (2013).
  • [23] P. Schippers et al., J. Geophys. Res.: Space Phys. 118, 7170 (2013).
  • [24] Y. Kawazura, Z. Yoshida, M. Nishiura, H. Saitoh, Y. Yano, T. Nogami, N. Sato, M. Yamasaki, A. Kashyap and T. Mushiake, Phys. Plasmas 22, 112503 (2015).
  • [25] C.W. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn (Springer, Berlin, 1985).
  • [26] H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications 2nd edn (Springer, Berlin, 1989).
  • [27] E.T. Jaynes, Probability Theory the Logic of Science, G.L. Bretthorst ed. (Cambridge University Press, 2003) pp.374-376.
  • [28] A.J. Brizard and T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
  • [29] T.S. Ham, Phys. Fluids 31, 2670 (1988).
  • [30] G.D. Birkhoff, Proc. Nat. Acad. Sci. U.S.A. 17, 12, 656 (1931).
  • [31] T.G. Northrop and E. Teller, Phys. Rev. 117, 1 (1960).