Plasma and Fusion Research
Volume 11, 1406113 (2016)
Regular Articles
- Technical Center, Nagoya University, Nagoya 464-8603, Japan
- 1)
- Department of Chemical Engineering, Nagoya University, Nagoya 464-8603, Japan
- 2)
- Division of Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
Abstract
It is widely known that cavitation bubbles are not static bubbles but have the dynamics of the expansion, the shrinkage, and the collapse. In this work, we produced electrical discharges in acoustic cavitation bubbles for the first time with the intension of enhancing the reactivity of sonochemical processes. Glow-like discharges were observed in cavitation bubbles on the bottom surface of the cylindrical electrode which was connected to a pulsed high-voltage power supply. Bright optical emission was observed from the region corresponding to the cloud of expanded cavitation bubbles, while we also observed electrical discharges even in the shrinking phase of cavitation bubbles. If discharge-produced reactive species have lifetimes that are longer than the interval between the discharge and the collapse of the cavitation bubble, the species composition in the collapsed cavitation bubble becomes different from that in conventional cavitation bubble, which may result in the enhancement of reactivity in sonochemical processes.
Keywords
acoustic cavitation, glow-like discharge, temporal evolution, nonequilibrium sonochemistry
Full Text
References
- [1] B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann and J.S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).
- [2] B. Sun, M. Sato, A. Harano and J.S. Clements, J. Electrostatics 43, 115 (1998).
- [3] M. Laroussi, IEEE Trans. Plasma Sci. 24, 1188 (1996).
- [4] S. Ikawa, K. Kitano and S. Hamaguchi, Plasma Process. Polym. 7, 33 (2010).
- [5] G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman, Plasma Process. Polym. 5, 503 (2008).
- [6] M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J.L. Zimmermann, New J. Phys. 11, 115012 (2009).
- [7] T. Ishijima, K. Nosaka, Y. Tanaka, Y. Uesugi, Y. Goto and H. Horibe, Appl. Phys. Lett. 103, 142101 (2013).
- [8] P. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).
- [9] K. Sato and K. Yasuoka, IEEE Trans. Plasma Sci. 36, 1144 (2008).
- [10] P. Bruggeman, J. Degroote, J. Vierendeels and C. Leys, Plasma Sources Sci. Technol. 17, 025008 (2008).
- [11] T. Ishijima, H. Hotta and H. Sugai, Appl. Phys. Lett. 91, 121501 (2007).
- [12] T. Ishijima, H. Sugiura, R. Saito, H. Toyoda and H. Sugai, Plasma Sources Sci. Technol. 19, 015010 (2010).
- [13] T. Shirafuji and Y. Himeno, Jpn. J. Appl. Phys. 52, 11NE03 (2013).
- [14] T. Takahashi, T. Takada and H. Toyoda, Jpn. J. Appl. Phys. 53, 07KE01 (2014).
- [15] K. Tachibana, Y. Takekata, Y.Mizumoto, H. Motomura and M. Jinno, Plasma Sources Sci. Technol. 20, 034005 (2011).
- [16] W. Tian, K. Tachibana and M.J. Kushner, J. Phys. D: Appl. Phys. 47, 055202 (2014).
- [17] C.E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995).
- [18] D.J. Flannigan and K.S. Suslick, Nature 434, 52 (2005).
- [19] S.I. Nikitenko, Advances Phys. Chem. 2014, 173878 (2014).
- [20] P.-K. Choi, S. Abe and Y. Hayashi, J. Phys. Chem. B 112, 918 (2008).
- [21] Y. Hayashi and P.-K. Choi, Ultrason. Sonochem. 23, 333 (2015).
- [22] M. Virot, R. Pflieger, J. Ravaux and S.I. Nikitenko, J. Phys. Chem. C 115, 10752 (2011).
- [23] Y. Iwata, N. Takada and K. Sasaki, Appl. Phys. Express 6, 127301 (2013).
- [24] K. Yasui, Ultrason. 36, 575 (1998).
- [25] J.-S. Chang, P.A. Lawless and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991).