Plasma and Fusion Research
Volume 11, 1404092 (2016)
Regular Articles
- 1)
- Tokyo City University, Setagaya, Tokyo 158-8557, Japan
- 2)
- High Energy Accelerator Research Organization/Accelerator Laboratory (KEK), Tsukuba 305-0801, Japan
- 3)
- Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8503, Japan
- 4)
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
Abstract
An electrostatic kicker is used for heavy ion beam injection into the KEK digital accelerator (DA) ring. A voltage of 20 kV, which must be immediately turned off after injection, is applied across the electrostatic electrodes before injection so as to deflect the injected beam into the ring orbit. An SI-Thyristor Matrix Array (SI-Thy MA) has been developed to replace the conventional thyratron switching device. Long ringing in the turn-off voltage affects the longitudinal motion of the injected beam bunch, resulting in the formation of microstructure. The physics behind the microstructure formation is discussed in detail.
Keywords
KEK-DA, SI-Thyristor Matrix Array, longitudinal beam dynamics, space charge effect, microstructure
Full Text
References
- [1] T. Iwashita et al., Phys. Rev. ST-AB 14, 071301 (2011).
- [2] K. Takayama et al., Nucl. Instrum. Methods B314, 11 (2013).
- [3] A.W. Hull, Trans. AIEE 47, 753 (1928).
- [4] K. Takayama et al., Plasma Fusion Res. 89, 87 (2013).
- [5] T. Adachi and T. Kawakubo, Phys. Rev. ST-AB 16, 053501 (2013).
- [6] H. Kobayashi, T. Kawakubo and A. Tokuchi, Proceedings of 5th Euro-Asian Pulsed Power Conference, September 8-12, 2014, Kumamoto, Japan, 23-26.
- [7] K. Takayama, Induction Accelerators (Springer, Berlin/New York, 2011) Chapter 12.
- [8] Leo Kwee Wah et al., Phys. Rev. ST-AB 16, 043502 (2013).
- [9] Liu Xigguang et al., submitted to Nucl. Instrum. Methods A (2015).