Plasma and Fusion Research
Volume 11, 1403105 (2016)
Regular Articles
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395, Japan
Abstract
A knock-on tail formation in deuteron velocity distribution function due to nuclear elastic scattering (NES) by energetic protons and its observation method using γ-ray-generating 6Li(d,pγ)7Li reaction are examined for proton-beam-injected deuterium plasmas. The proton velocity distribution function is obtained by means of the ion trajectory analysis in a Tokamak magnetic configuration. The knock-on tail in two-dimensional (2D) deuteron velocity distribution function due to NES by energetic protons is evaluated via Boltzmann collision integral and 2D Fokker-Planck simulation. From the 2D deuteron velocity distribution function obtained, enhancement of the emission rate of 0.48-MeV γ-rays by 6Li(d,p)7Li∗, 7Li∗→7Li+γ reaction due to NES is evaluated. It is shown that the γ-ray emission rate is significantly influenced by the magnitude of the knock-on tail, and the γ-ray-generating reaction can be a useful tool for the knock-on tail observation.
Keywords
nuclear elastic scattering, knock-on tail, γ-ray-generating 6Li(d,pγ)7Li reaction, Boltzmann collision integral, Fokker-Planck equation
Full Text
References
- [1] L. Ballabio, G. Gorini and J. Källne, Phys. Rev. E 55, 3358 (1997).
- [2] J. Källne, L. Ballabio, J. Frenje et al., Phys. Rev. Lett. 85, 1246 (2000).
- [3] J.J. Devany and M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971).
- [4] S.T. Perkins and D.E. Cullen, Nucl. Sci. Eng. 20, 77 (1981).
- [5] H. Matsuura and Y. Nakao, Phys. Plasmas 13, 062507 (2006).
- [6] H. Matsuura and Y. Nakao, Phys. Plasmas 14, 054504 (2007).
- [7] H. Matsuura et al., Plasma Phys. Control. Fusion 53, 035023 (2011).
- [8] H. Matsuura et al., Proc. ICENES'93 (Chiba, 1993), edited by H. Yasuda (World Scientific, Singapore, 1994) p.266.
- [9] Y. Nakao et al., Fusion Technol. 27, 555 (1995).
- [10] M. Nakamura et al., J. Phys. Soc. Jpn. 75, 024801 (2006).
- [11] Y. Nakao et al., Nucl. Fusion 21, 979 (1981).
- [12] J. Galambos et al., Nucl. Fusion 24, 739 (1984).
- [13] Y. Nakao et al., Nucl. Fusion 28, 1029 (1988).
- [14] J.F. Clarke, Nucl. Fusion 20, 563 (1980).
- [15] H. Matsuura et al., Plasma Fusion Res. 7, 2403076 (2012).
- [16] H. Matsuura et al., Plasma Fusion Res. 2, S1078 (2007).
- [17] H. Matsuura et al., Fusion Sci. Technol. 60, 634 (2011).
- [18] H. Matsuura et al., Plasma Fusion Res. 8, 2403064 (2013).
- [19] V.T. Voronchev, V.I. Kukulin and Y. Nakao, Phys. Rev. E 63, 26413-1 (2001).
- [20] V.T. Voronchev et al., Mem. Fac. Eng. Kyushu Univ. 51, 63 (1991).
- [21] A.J. Elwyn et al., Phys. Rev. C 16, 1744 (1977).
- [22] S.N. Abramovich et al., Bull. Kazakh Acad. Sci. Phys. Math. 4, 24 (1984).
- [23] R.B. White et al., Phys. Fluids 27, 2455 (1984).
- [24] V.A. Yavorskij et al., Plasma Phys. Control. Fusion 43, 249 (2001).
- [25] B.J. Green, Plasma Phys. Control. Fusion 45, 687 (2003).
- [26] E. Bittoni, J.G. Cordey and M. Cox, Nucl. Fusion 20, 931 (1980).
- [27] J.G. Cordey et al., Nucl. Fusion 14, 441 (1974).