Plasma and Fusion Research

Volume 11, 1403105 (2016)

Regular Articles


Knock-on Tail Formation Due to Nuclear Elastic Scattering and Its Observation Method Using γ-Ray-Generating 6Li+d Reaction in Tokamak Deuterium Plasmas
Hideaki MATSUURA, Shota SUGIYAMA, Shogo KAJIMOTO, Daisuke SAWADA, Yosuke NISHIMURA and Yasuko KAWAMOTO
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395, Japan
(Received 8 January 2016 / Accepted 1 June 2016 / Published 16 September 2016)

Abstract

A knock-on tail formation in deuteron velocity distribution function due to nuclear elastic scattering (NES) by energetic protons and its observation method using γ-ray-generating 6Li(d,pγ)7Li reaction are examined for proton-beam-injected deuterium plasmas. The proton velocity distribution function is obtained by means of the ion trajectory analysis in a Tokamak magnetic configuration. The knock-on tail in two-dimensional (2D) deuteron velocity distribution function due to NES by energetic protons is evaluated via Boltzmann collision integral and 2D Fokker-Planck simulation. From the 2D deuteron velocity distribution function obtained, enhancement of the emission rate of 0.48-MeV γ-rays by 6Li(d,p)7Li, 7Li7Li+γ reaction due to NES is evaluated. It is shown that the γ-ray emission rate is significantly influenced by the magnitude of the knock-on tail, and the γ-ray-generating reaction can be a useful tool for the knock-on tail observation.


Keywords

nuclear elastic scattering, knock-on tail, γ-ray-generating 6Li(d,pγ)7Li reaction, Boltzmann collision integral, Fokker-Planck equation

DOI: 10.1585/pfr.11.1403105


References

  • [1] L. Ballabio, G. Gorini and J. Källne, Phys. Rev. E 55, 3358 (1997).
  • [2] J. Källne, L. Ballabio, J. Frenje et al., Phys. Rev. Lett. 85, 1246 (2000).
  • [3] J.J. Devany and M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971).
  • [4] S.T. Perkins and D.E. Cullen, Nucl. Sci. Eng. 20, 77 (1981).
  • [5] H. Matsuura and Y. Nakao, Phys. Plasmas 13, 062507 (2006).
  • [6] H. Matsuura and Y. Nakao, Phys. Plasmas 14, 054504 (2007).
  • [7] H. Matsuura et al., Plasma Phys. Control. Fusion 53, 035023 (2011).
  • [8] H. Matsuura et al., Proc. ICENES'93 (Chiba, 1993), edited by H. Yasuda (World Scientific, Singapore, 1994) p.266.
  • [9] Y. Nakao et al., Fusion Technol. 27, 555 (1995).
  • [10] M. Nakamura et al., J. Phys. Soc. Jpn. 75, 024801 (2006).
  • [11] Y. Nakao et al., Nucl. Fusion 21, 979 (1981).
  • [12] J. Galambos et al., Nucl. Fusion 24, 739 (1984).
  • [13] Y. Nakao et al., Nucl. Fusion 28, 1029 (1988).
  • [14] J.F. Clarke, Nucl. Fusion 20, 563 (1980).
  • [15] H. Matsuura et al., Plasma Fusion Res. 7, 2403076 (2012).
  • [16] H. Matsuura et al., Plasma Fusion Res. 2, S1078 (2007).
  • [17] H. Matsuura et al., Fusion Sci. Technol. 60, 634 (2011).
  • [18] H. Matsuura et al., Plasma Fusion Res. 8, 2403064 (2013).
  • [19] V.T. Voronchev, V.I. Kukulin and Y. Nakao, Phys. Rev. E 63, 26413-1 (2001).
  • [20] V.T. Voronchev et al., Mem. Fac. Eng. Kyushu Univ. 51, 63 (1991).
  • [21] A.J. Elwyn et al., Phys. Rev. C 16, 1744 (1977).
  • [22] S.N. Abramovich et al., Bull. Kazakh Acad. Sci. Phys. Math. 4, 24 (1984).
  • [23] R.B. White et al., Phys. Fluids 27, 2455 (1984).
  • [24] V.A. Yavorskij et al., Plasma Phys. Control. Fusion 43, 249 (2001).
  • [25] B.J. Green, Plasma Phys. Control. Fusion 45, 687 (2003).
  • [26] E. Bittoni, J.G. Cordey and M. Cox, Nucl. Fusion 20, 931 (1980).
  • [27] J.G. Cordey et al., Nucl. Fusion 14, 441 (1974).