[Table of Contents]

Plasma and Fusion Research

Volume 10, 1403019 (2015)

Regular Articles


Gyrokinetic Analyses of Core Heat Transport in JT-60U Plasmas with Different Toroidal Rotation Direction
Emi NARITA, Mitsuru HONDA1), Nobuhiko HAYASHI1), Hajime URANO1), Shunsuke IDE1) and Takeshi FUKUDA
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
1)
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
(Received 18 December 2014 / Accepted 11 February 2015 / Published 19 March 2015)

Abstract

Tokamak plasmas with an internal transport barrier (ITB) are capable of maintaining improved confinement performance. The ITBs formed in plasmas with the weak magnetic shear and the weak radial electric field shear are often observed to be modest. In these ITB plasmas, it has been found that the electron temperature ITB is steeper when toroidal rotation is in a co-direction with respect to the plasma current than when toroidal rotation is in a counter-direction. To clarify the relationship between the direction of toroidal rotation and heat transport in the ITB region, we examine dominant instabilities using the flux-tube gyrokinetic code GS2. The linear calculations show a difference in the real frequencies; the counter-rotation case has a more trapped electron mode than the co-rotation case. In addition, the nonlinear calculations show that with this difference, the ratio of the electron heat diffusivity χe to the ion's χi is higher for the counter-rotation case than for the co-rotation case. The difference in χei agrees with the experiment. We also find that the effect of the difference in the flow shear between the two cases due to the toroidal rotation direction on the linear growth rate is not significant.


Keywords

heat transport, toroidal rotation, flux-tube gyrokinetic code

DOI: 10.1585/pfr.10.1403019


References

  • [1] H. Shirai et al., Nucl. Fusion 39, 1713 (1999).
  • [2] N. Oyama et al., Nucl. Fusion 47, 689 (2007).
  • [3] Y. Kamada et al., Nucl. Fusion 51, 073011 (2011).
  • [4] B.J. Green for the ITER International Team and Participant Teams, Plasma Phys. Control. Fusion 45, 687 (2003).
  • [5] T. Fujita, Plasma Phys. Control. Fusion 44, A19 (2002).
  • [6] G. Rewoldt et al., Nucl. Fusion 42, 403 (2002).
  • [7] H. Urano et al., Nucl. Fusion 48, 085007 (2008).
  • [8] M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995).
  • [9] W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000).
  • [10] M. Barnes et al., Phys. Rev. Lett. 106, 175004 (2011).
  • [11] C.M. Roach et al., Plasma Phys. Control. Fusion 51, 124020 (2009).
  • [12] E.G. Highcock et al., Phys. Plasmas 18, 102304 (2011).
  • [13] W. Guttenfelder and J. Candy, Phys. Plasmas 18, 022506 (2011).
  • [14] R.E. Waltz et al., Phys. Plasmas 4, 2482 (1997).
  • [15] J.E. Kinsey et al., Phys. Plasmas 12, 052503 (2005).
  • [16] N. Hayashi and JT-60 Team, Phys. Plasmas 17, 056112 (2010).
  • [17] M. Honda et al., Nucl. Fusion 53, 073050 (2013).
  • [18] M. Kikuchi and M. Azumi, Plasma Phys. Control. Fusion 37, 1215 (1995).
  • [19] J.A. Baumgaertel et al., Phys. Plasmas 19, 122306 (2012).
  • [20] R.V. Bravenec et al., Phys. Plasmas 20, 104506 (2013).
  • [21] E. Narita et al., Plasma Fusion Res. 8, 1403082 (2013).
  • [22] M.A. Beer et al., Phys. Plasmas 2, 2687 (1995).
  • [23] J. Candy, Phys. Plasmas 12, 072307 (2005).
  • [24] M. Nunami et al., Phys. Plasmas 19, 042504 (2012).
  • [25] G.W. Hammett et al., Bull. Am. Phys. Soc. (2006), Abstract No.VP1.136. See http://meetings.aps.org/link/BAPS.2006.DPP.VP1.136
  • [26] G.M. Staebler et al., Phys. Plasmas 14, 055909 (2007).
  • [27] J.E. Kinsey et al., Phys. Plasmas 15, 055908 (2008).

This paper may be cited as follows:

Emi NARITA, Mitsuru HONDA, Nobuhiko HAYASHI, Hajime URANO, Shunsuke IDE and Takeshi FUKUDA, Plasma Fusion Res. 10, 1403019 (2015).