Plasma and Fusion Research

Volume 10, 1304005 (2015)

Letters


Collimation of Fast Electrons in Critical Density Plasma Channel
Tomoyuki IWAWAKI, Hideaki HABARA, Sophie BATON1), Kiyoshi MORITA, Julien FUCHS1), Sophia CHEN1), Motoaki NAKATSUTSUMI1,2), Christophe ROUSSEAUX3), Francesco FILIPPI4), Wigen NAZAROV5) and Kazuo A. TANAKA
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
1)
LULI, CNRS -Ecole Polytechnique -Université Pierre et Marie Curie -CEA, 91128 Palaiseau, France
2)
European X-Ray Free-Electron Laser Facility (XFEL) GmbH, Germany
3)
CEA, DAM, DIF, F-91297 Arpajon, France
4)
La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome, Italy
5)
School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
(Received 4 October 2014 / Accepted 17 December 2014 / Published 30 January 2015)

Abstract

Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is generated through the interaction of ultra-intense laser light with a uniform critical density plasma in experiments and 2D PIC simulations. In the experiment, the uniform critical density plasma is created by ionizing an ultra-low density foam target. The spacial distribution of the fast electron is observed by Imaging Plate. 2D PIC simulation and post process analysis reveal magnetic collimation of energetic electrons along the plasma channel.


Keywords

ultra-intense laser, fast electron, plasma channeling, electron beam

DOI: 10.1585/pfr.10.1304005


References

  • [1] M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
  • [2] R. Kodama et al., Phys. Plasmas 8, 2268 (2001).
  • [3] K.A. Tanaka et al., Phys. Plasmas 7, 2014 (2000).
  • [4] A.L. Lei et al., Phys. Rev. E 76, 066403 (2007).
  • [5] T. Tanimoto et al., J. Phys.: Conf. Ser. 112, 022095 (2008).
  • [6] R.J. Mason et al., Phys. Plasmas 5, 211 (1998).
  • [7] W.L. Kruer and K. Estabrook, Phys. Fluid 28, 430 (1985).
  • [8] A. Pukhov and J. Meyer-ter-Vehn, Phys. Plasmas 5, 1880 (1998).
  • [9] A. Pukhov, Z.-M. Sheng and J. Meyer-ter-Vehn, Phys. Plasmas 6, 2847 (1999).
  • [10] J.S. Green et al., Phys. Rev. Lett. 100, 015003 (2002).
  • [11] Y.T. Li et al., Phys. Rev. E 69, 036405 (2004).
  • [12] S. Chen et al., preparation for submission to Phys. Plasmas.
  • [13] National Institute of Standards and Technology, Physical Means. Laboratory, ESTAR, http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
  • [14] T. Yabuuchi et al., Phys. Plasmas 14, 040706 (2007).
  • [15] H. Sakagami and K. Mima, Proc. of 2nd Int. Conf. Inertial Fusion Sciences and Applications, Kyoto, 2001, 380-383 (Elsevier, 2002).
  • [16] T. Bonnet et al., Rev. Sci. Instrum. 84, 013508 (2013).
  • [17] K.A. Tanaka et al., Rev. Sci. Instrum. 76, 013507 (2005).
  • [18] R. Kodama et al., Nature 432, 1005 (2004).
  • [19] S. Kar et al., Phys. Rev. Lett. 102, 055001 (2009).
  • [20] R.H.H. Scott et al., Phys. Rev. Lett. 109, 015001 (2012).
  • [21] A. Debayle et al., Phys. Rev. E 82, 036405 (2010).
  • [22] V.M. Ovchinnikov et al., Phys. Rev. Lett. 110, 065007 (2013).
  • [23] A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 76, 3975 (1996).
  • [24] H. Habara et al., Phys. Rev. Lett. 97, 095004 (2006).
  • [25] T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
  • [26] N. Nakanii et al., Appl. Phys. Lett. 93, 081501 (2008).
  • [27] N. Naseri, S.G. Bochkarev and W. Rozmus, Phys. Plasmas 17, 033107 (2010).
  • [28] L. Willingale et al., Phys. Rev. Lett. 106, 105002 (2011).
  • [29] T. Matsuoka et al., Plasma Phys. Control. Fusion 50, 105011 (2008).

This paper may be cited as follows:

Tomoyuki IWAWAKI, Hideaki HABARA, Sophie BATON, Kiyoshi MORITA, Julien FUCHS, Sophia CHEN, Motoaki NAKATSUTSUMI, Christophe ROUSSEAUX, Francesco FILIPPI, Wigen NAZAROV and Kazuo A. TANAKA, Plasma Fusion Res. 10, 1304005 (2015).