[Table of Contents]

Plasma and Fusion Research

Volume 9, 3406032 (2014)

Regular Articles


Experimental Study on G-Band Oversized Backward Wave Oscillator Driven by Weakly Relativistic Electron Beam
Shota MAGORI, Kazuo OGURA, Takayuki IWASAKI, Junpei KOJIMA, Kiyoyuki YAMBE, Shin KUBO1), Takashi SHIMOZUMA1), Sakuji KOBAYASHI1) and Kohji OKADA1)
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 6 December 2013 / Accepted 3 February 2014 / Published 7 April 2014)

Abstract

We studied a G-band oversized backward wave oscillator (BWO) driven by a weakly relativistic electron beam of less than 100 kV. Rectangular corrugations are used as slow-wave structures having surface waves with upper cutoff frequencies above 150 GHz (G-band). We examine how dispersion characteristics of surface waves are affected by accuracy in machining the corrugation amplitude, width, and period length. Of these, accuracy in the amplitude has the largest effect. Uniformly distributed annular electron beams are generated by a disk-type cold cathode and injected into the G-band BWO. G-band BWO operations in 137 - 173 GHz and above 173 GHz are achieved by changing the corrugation amplitude. The radiation patterns are fairly broad, and the estimated radiation power is at kW level.


Keywords

oversized backward wave oscillator, weakly relativistic electron beam, cold cathode, slow-wave structure, rectangular corrugation, G-band

DOI: 10.1585/pfr.9.3406032


References

  • [1] A.V. Gunin et al., IEEE Trans. Plasma Sci. 26, 326 (1998).
  • [2] S.P. Bugaev et al., IEEE Trans. Plasma Sci. 18, 518 (1990).
  • [3] S.P. Bugaev et al., IEEE Trans. Plasma Sci. 18, 525 (1990).
  • [4] A.N. Vlasov et al., IEEE Trans. Plasma Sci. 28, 550 (2000).
  • [5] J. Urata et al., Phys. Rev. Lett. 80, 516 (1998).
  • [6] H.L. Andrews et al., Phys. Rev. ST Accel. Beams 12, 080703 (2009).
  • [7] V. Kumar and K.-J. Kim, Phys. Rev. ST Accel. Beams 12, 070703 (2009).
  • [8] K. Ogura et al., IEEJ Trans. FM 125, 733 (2005).
  • [9] S. Aoyama et al., Trans. Fusion Sci. Tech. 51, 325 (2007).
  • [10] K. Ogura et al., IEEJ Trans. FM 127, 681 (2007).
  • [11] H. Oe et al., J. Plasma Fusion Res. SERIES 8, 1477 (2009).
  • [12] K. Yambe et al., IEEE Trans. Plasma Sci. 41, 2781 (2013).
  • [13] X. Zheng et al., J. Phys. Soc. Jpn. 64, 1402 (1995).
  • [14] K. Ogura et al., IEEE Trans. Plasma Sci. 41, 2729 (2013).
  • [15] K. Ogura et al., J. Plasma Fusion Res. 6, 2401039 (2011).
  • [16] S. Hasegawa et al., Trans. Fusion Sci. Tech. 63, 259 (2013).

This paper may be cited as follows:

Shota MAGORI, Kazuo OGURA, Takayuki IWASAKI, Junpei KOJIMA, Kiyoyuki YAMBE, Shin KUBO, Takashi SHIMOZUMA, Sakuji KOBAYASHI and Kohji OKADA, Plasma Fusion Res. 9, 3406032 (2014).