[Table of Contents]

Plasma and Fusion Research

Volume 8, 1403039 (2013)

Regular Articles


Formation of Electron-Root Radial Electric Field and its Effect on Thermal Transport in LHD High Te Plasma
Seikichi MATSUOKA, Shinsuke SATAKE, Hiromi TAKAHASHI, Arimitsu WAKASA1), Masayuki YOKOYAMA, Takeshi IDO, Akihiro SHIMIZU, Takashi SHIMOZUMA, Sadayoshi MURAKAMI1) and LHD Experiment Group
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
(Received 17 July 2012 / Accepted 5 March 2013 / Published 22 May 2013)

Abstract

Neoclassical transport analyses have been performed for a high electron temperature LHD plasma with steep temperature gradient using a neoclassical transport simulation code, FORTEC-3D. It is shown that the large positive radial electric field is spontaneously formed at the core along with the increase in the electron temperature, while the neoclassical heat diffusivity remains almost unchanged. This indicates that the 1/ν-type increase expected in the neoclassical transport in helical plasmas can be avoided by the spontaneous formation of the radial electric field. At the same time, it is found that the experimentally estimated heat diffusivity is significantly reduced. This suggests that the formation process of the transport barrier in the high electron temperature plasma can be caused by the spontaneous formation of the radial electric field.


Keywords

radial electric field, finite orbit width effect, neoclassical transport, δf Monte Carlo simulation

DOI: 10.1585/pfr.8.1403039


References

  • [1] K. Ida et al., Phys. Rev. Lett. 91, 085003 (2003).
  • [2] M. Yokoyama et al., Fusion Sci. Technol. 50, 327 (2006).
  • [3] T. Shimozuma et al., Nucl. Fusion 45, 1396 (2005).
  • [4] H. Takahashi et al., IAEA Fusion Energy Conference 2010, pp. EXC/P8, Daejon, Korea (2010).
  • [5] T. Shimozuma et al., J. Phys.: Conf. Series 123, 012022 (2008).
  • [6] M. Yokoyama et al., Nucl. Fusion 47, 1213 (2007).
  • [7] S. Matsuoka et al., Phys. Plasmas 18, 032511 (2011).
  • [8] A.H. Boozer, Phys. Fluids 24, 1999 (1981).
  • [9] S. Brunner et al., Phys. Plasmas 6, 4504 (1999).
  • [10] W.X. Wang et al., J. Plasma Fusion Res. SERIES 2, 250 (1999).
  • [11] S. Satake et al., Plasma Fusion Res. 3, S1062 (2008).
  • [12] W.I. van Rij and S.P. Hirshman, Phys. Fluids B 1, 563 (1989).
  • [13] A. Wakasa et al., Contrib. Plasma Phys. 50, 582 (2010).
  • [14] S. Matsuoka et al., Plasma Fusion Res. 6, 1203016 (2011).
  • [15] S.P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99 (1991).
  • [16] H. Sugama et al., Plasma Phys. Control. Fusion 53, 024004 (2011).
  • [17] K.H. Burrell, Phys. Plasmas 4, 1499 (1997).
  • [18] A. Fujisawa et al., Plasma Phys. Control. Fusion 48, S205 (2006).
  • [19] M. Nunami et al., Plasma Fusion Res. 5, 016 (2010).

This paper may be cited as follows:

Seikichi MATSUOKA, Shinsuke SATAKE, Hiromi TAKAHASHI, Arimitsu WAKASA, Masayuki YOKOYAMA, Takeshi IDO, Akihiro SHIMIZU, Takashi SHIMOZUMA, Sadayoshi MURAKAMI and LHD Experiment Group, Plasma Fusion Res. 8, 1403039 (2013).