[Table of Contents]

Plasma and Fusion Research

Volume 7, 2502055 (2012)

Overview Articles


Microwave Reflectometry Diagnostics: Present Day Systems and Challenges for Future Devices
Teresa ESTRADA1,2), Kazunobu NAGASAKI1), Emilio BLANCO2), Germán PEREZ2) and Victor TRIBALDOS3)
1)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
2)
Laboratorio Nacional de Fusión. As. Euratom-CIEMAT, 28040 Madrid, Spain
3)
Universidad Carlos III de Madrid. Leganés, Madrid, Spain
(Received 27 November 2011 / Accepted 23 March 2012 / Published 13 September 2012)

Abstract

Microwave reflectometry technique has experienced significant advances in the last two decades becoming a very attractive diagnostic presently used in almost all fusion devices. This technique allows measuring electron density profiles, plasma instabilities, turbulence and radial electric fields with excellent spatial and temporal resolution. Although it is not straightforward, the extension of reflectometry to future devices is possible partially due to the limited access needed to accommodate the antennas inside the vacuum vessel keeping the sensitive elements as microwave sources and detectors outside the radiation area. However, in order to achieve a good diagnostic performance, limitations related to relativistic effects, intense neutron- and γ-radiation and long pulse operation have to be considered in the reflectometer design phase.


Keywords

radio-frequency and microwave measurements, tokamak, stellarator, steady-state operation

DOI: 10.1585/pfr.7.2502055


References

  • [1] E. Mazzucato, Rev. Sci. Instrum. 69, 2201 (1998).
  • [2] http://www.aug.ipp.mpg.de/IRW/
  • [3] Special Issue on Reflectometry, Nucl. Fusion 46 (2006).
  • [4] C. Laviron, A.J.H. Donné, M.E. Manso and J. Sanchez, Plasma Phys. Control. Fusion 38, 905 (1996).
  • [5] V.A. Vershkov and V.A. Zhuravlev, Sov. Phys. Tech. Phys. 32, 523 (1987).
  • [6] E. de la Luna et al., Rev. Sci. Instrum. 66, 403 (1995).
  • [7] M. Hirsch, H.-J. Hartfuss, T. Geist and E. de la Luna, Rev. Sci. Instrum. 67, 1807 (1996).
  • [8] T. Estrada et al., Plasma Phys. Control. Fusion 43, 1535 (2001).
  • [9] K. Mukai et al., Contrib. Plasma Phys. 50, 646 (2010).
  • [10] C.A.J. Hugenholtz and H. Heijnen, Rev. Sci. Instrum. 62, 1100 (1990).
  • [11] J.C. Gorkon, M.J. van de Pol and A.J.H. Donne, Rev. Sci. Instrum. 72, 336 (2001).
  • [12] Y. Kogi et al., Rev. Sci. Instrum. 74, 1510 (2003).
  • [13] T. Tokuzawa, K. Kawahata, K. Tanaka and the LHD Experimental Group, Nucl. Fusion 46, S670 (2006).
  • [14] F. Clairet, C. Bottereau, J.M. Chareau and R. Sabot, Rev. Sci. Instrum. 74, 1481 (2003).
  • [15] G. Wang et al., Rev. Sci. Instrum. 74, 1525 (2003).
  • [16] S. Kubota, W.A. Peebles, X.V. Nguyen and L. Roquemore, Rev. Sci. Instrum. 74, 1477 (2003).
  • [17] A. Silva, M.E. Manso, P. Varela and L. Meneses, Rev. Sci. Instrum. 77, 10E932 (2006).
  • [18] F. Clairet et al., Rev. Sci. Instrum. 81, 10D903 (2010).
  • [19] L. Meneses, L. Cupido and M.E. Manso, Rev. Sci. Instrum. 81, 10D924 (2010).
  • [20] K.H. Burrell et al., Plasma Phys. Control. Fusion 34, 1859 (1992).
  • [21] G.D. Conway et al., Phys. Rev. Lett. 84, 1463 (2000).
  • [22] N. Oyama and K. Shinohara, Rev. Sci. Instrum. 73, 1169 (2002).
  • [23] R. Sabot et al., Plasma Phys. Control. Fusion 48, B421 (2006).
  • [24] L.F. Ruchko et al., Rev. Sci. Instrum. 75, 655 (2004).
  • [25] S. Hacquin et al., Plasma Phys. Control. Fusion 49, 1371 (2007).
  • [26] L. Cupido, J. Sánchez and T. Estrada, Rev. Sci. Instrum. 75, 3865 (2004).
  • [27] A. Krämer-Flecken et al., Nucl. Fusion 46, S730 (2006).
  • [28] V. Vershkov et al., Nucl. Fusion 45, S203 (2005).
  • [29] A. Krämer-Flecken, S. Soldatov, H.R. Koslowski and O. Zimmermann, Phys. Rev. Lett. 97, 045006 (2006).
  • [30] Y. Lin, R. Nazikian, J.H. Irby and E.S. Marmar, Plasma Phys. Control. Fusion 43, L1 (2001).
  • [31] E. Blanco et al., Rev. Sci. Instrum. 75, 3822 (2004).
  • [32] F. da Silva, S. Heuraux, S. Hacquin and M.E. Manso, Rev. Sci. Instrum. 75, 1497 (2004).
  • [33] https://www.aug.ipp.mpg.de/aug/ERCC/
  • [34] E. Mazzucato, Nucl. Fusion 41, 203 (2001).
  • [35] B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011).
  • [36] http://www.igi.cnr.it/irw10/
  • [37] M. Hirsch et al., Plasma Phys. Control. Fusion 43, 1641 (2001).
  • [38] P. Hennequin et al., Rev. Sci. Instrum. 75, 3881 (2004).
  • [39] G.D. Conway et al., Plasma Phys. Control. Fusion 46, 951 (2004).
  • [40] T. Happel et al., Rev. Sci. Instrum. 80, 073502 (2009).
  • [41] E. Blanco and T. Estrada, Plasma Phys. Control. Fusion 50, 095011 (2008).
  • [42] C. Lechte, IEEE Trans. Plasma Sci. 37, 1099 (2009).
  • [43] E. Blanco, T. Estrada and J. Sánchez, Plasma Phys. Control. Fusion 48, 699 (2006).
  • [44] T. Happel, E. Blanco and T. Estrada, Rev. Sci. Instrum. 81, 10D901 (2010).
  • [45] L. Vermare et al., Phys. Plasmas 18, 012306 (2011).
  • [46] T. Happel et al., Phys. Plasmas 18, 102302 (2011).
  • [47] T. Estrada et al., Plasma Phys. Control. Fusion 51, 124015 (2009).
  • [48] T. Estrada et al., EPL (Europhysics Letters) 92, 35001 (2010).
  • [49] T. Estrada, C. Hidalgo, T. Happel and P.H. Diamond, Phys. Rev. Lett. 107, 245004 (2011).
  • [50] G.D. Conway et al., Phys. Rev. Lett. 106, 065001 (2011).
  • [51] L. Schmitz et al., Shear Flow and Turbulence Suppression in Limit Cycle Oscillations Preceding the L-H Transition (Transport Task Force Workshop, San Diego, California, 2011).
  • [52] H.J. Hartfuss, R. König and A. Werner, Plasma Phys. Control. Fusion 48, R83 (2006).
  • [53] G. Vayakis et al., Nucl. Fusion 46, S836 (2006).
  • [54] H. Bindslev, Plasma Phys. Control. Fusion 34, 1601 (1992).
  • [55] H. Bindslev, Plasma Phys. Control. Fusion 35, 1093 (1993).
  • [56] V. Tribaldos, J.A. Jiménez, J. Guasp and B.P. van Milligen, Plasma Phys. Control. Fusion 40, 2113 (1998).
  • [57] G. Kramer et al., Nucl. Fusion 46, S846 (2006).
  • [58] M. Hirsch, E. Holzhauer and H.-J. Hartfuss, Nucl. Fusion 46, S853 (2006).
  • [59] G. Perez, T. Estrada, G. Vayakis and C. Walker, Fusion Eng. Des. 84, 1488 (2009).
  • [60] V.A. Vershkov, Development of the HFS ITER reflectometry, 9th International Reflectometry Workshop (IRW9), 2009.
  • [61] G.D. Conway, G.R. Hanson, W.A. Peebles and A. Stegmeir, Antenna configuration options for the ITER lowfield-side LFS reflectometer. ITER_D_35AHBB, 2011.
  • [62] G.D. Conway et al., Stray radiation protection of ITER microwave based diagnostics. ITER_D_33PKHG, 2011.
  • [63] V. Furtula et al., Rev. Sci. Instrum. 81, 10D913 (2010).
  • [64] J.R. Montejo-Garai, J.A. Ruiz-Cruz, J.M. Rebollar and T. Estrada, IEEE Microwave and Wireless Components Lett. 21, 209 (2011).
  • [65] R. König et al., Rev. Sci. Instrum. 81, 10E133 (2010).
  • [66] M. Hirsch, Diagnostic and other in-vessel components in the high-power m-wave backgroundof ECR heated steady-state discharges (21st International Toki Conference, Toki, Japan, 2011).
  • [67] L. Esteban et al., IEEE Trans. Nucl. Sci. 58, 1562 (2011).
  • [68] P. Varela et al., Nucl. Fusion 46, S693 (2006).
  • [69] J. Santos, L. Guimarais and M.E. Manso, Rev. Sci. Instrum. 81, 10D926 (2010).
  • [70] F. Clairet et al., Rev. Sci. Instrum. 82, 083502 (2011).
  • [71] J. Santos, M.E. Manso, P. Varela and J. Neuhauser, Rev. Sci. Instrum. 74, 1489 (2003).
  • [72] J. Santos et al., Nucl. Fusion 52, 032003 (2012).

This paper may be cited as follows:

Teresa ESTRADA, Kazunobu NAGASAKI, Emilio BLANCO, Germán PEREZ and Victor TRIBALDOS, Plasma Fusion Res. 7, 2502055 (2012).