[Table of Contents]

Plasma and Fusion Research

Volume 7, 2405141 (2012)

Regular Articles


Fabrication of the Hydrogen Recovery Unit in the Molten Salt Loop Orosh2i-1 and Preliminary Evaluation for Hydrogen Transfer
Takuya NAGASAKA, Teruya TANAKA, Akio SAGARA, Teruo MUROGA, Masatoshi KONDO1), Takashi WATANABE2), Satoshi FUKADA3), Hiroshi YUKAWA4), Tomonori NAMBU5) and Tomohito IIKUBO6)
National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
1)
Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
2)
The Graduate University for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
3)
Department of Advanced Energy Engineering Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
4)
Graduate School and School of Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
5)
Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294, Japan
6)
Daido Bunseki Research, Inc., Daido-cho, Minami-ku, Nagoya 457-8545, Japan
(Received 10 December 2011 / Accepted 8 May 2012 / Published 22 November 2012)

Abstract

Hydrogen recovery unit is developed for the molten salt loop Orosh2i-1. Pure Ni was selected as hydrogen permeation material due to its industrial maturity of fabrication technology and good compatibility with molten salt in fusion reactor condition. No significant degradation of hydrogen permeability of the pure Ni during the fabrication process. Advanced hydrogen permeation materials, such as Pd, V, Nb, and Ta, maintaining higher hydrogen permeability are also discussed to develop more compact hydrogen recovery systems.


Keywords

hydrogen permeation metal, tritium recovery system, Flibe, Flinak

DOI: 10.1585/pfr.7.2405141


References

  • [1] A. Sagara et al., Fusion Sci. Technol. 60, 3 (2011).
  • [2] S. Fukada et al., Fusion Eng. Des. 81, 477 (2006).
  • [3] E. Serra et al., Met. Mater. Trans. A 29A, 1023 (1998).
  • [4] T. Ozaki et al., Intl. J. Hydrogen Energy 28, 297 (2003).
  • [5] H. Yukawa et al., J. Alloys and Compounds 476, 102 (2009).
  • [6] K. Ishikawa et al., Intermetallics 17, 109 (2009).
  • [7] T. Nagasaka et al., 17th Topical Meeting on the Technology of Fusion Energy, Nov. 12-17, 2006, Albuquerque, USA.
  • [8] Y.I. Belyakov and N.I. Ionov, Sov. Phys.-Tech. Phys. 6, 146 (1961).
  • [9] Y. Ebisuzaki et al., J. Chem. Phys. 46, 1378 (1967).
  • [10] W. Eichenauer et al., Z. Metallkd. 56, 287 (1965).
  • [11] N. Kishimoto et al., Nucl. Technol. 66, 578 (1984).
  • [12] C.B. Post and W.R. Ham, J. Chem. Phys. 6, 598 (1938).
  • [13] W.M. Robertson, Z. Metallkd. 64, 436 (1973).
  • [14] T. Tanabe et al., J. Nucl. Mater. 122&123, 1568 (1984).
  • [15] T. Shiraishi et al., J. Nucl. Mater. 254, 205 (1998).
  • [16] A. Sagara et al., J. Nucl. Mater. 248, 147 (1997).

This paper may be cited as follows:

Takuya NAGASAKA, Teruya TANAKA, Akio SAGARA, Teruo MUROGA, Masatoshi KONDO, Takashi WATANABE, Satoshi FUKADA, Hiroshi YUKAWA, Tomonori NAMBU and Tomohito IIKUBO, Plasma Fusion Res. 7, 2405141 (2012).