[Table of Contents]

Plasma and Fusion Research

Volume 7, 2405053 (2012)

Regular Articles


Plasma Diagnostics Required for a Heliotron-Type DEMO Reactor
Mitsutaka ISOBE1,2), Tsuyoshi AKIYAMA1), Tokihiko TOKUZAWA1), Teruya TANAKA1,2), Daiji KATO1), Hiroyuki A. SAKAUE1), Takuya GOTO1), Junichi MIYAZAWA1,2), Akio SAGARA1,2) and the FFHR Design Group1)
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
Department of Fusion Science, The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 8 December 2011 / Accepted 15 March 2012 / Published 07 June 2012)

Abstract

The plasma diagnostics required for a heliotron-type DEMO reactor are discussed in terms of real-time burn control and safe operation of the machine. The minimum diagnostic set having the smallest footprint are essential in DEMO. Neutron transport calculation suggests that the diagnostic components used in existing experiments will deteriorate immediately in a DEMO reactor hall if they are not protected by a neutron shield. Neutron energy spectrometry is a promising diagnostic that is expected to play an important role in diagnosing DEMO plasmas, providing a fusion energy output, fuel ion temperature, ratio of deuteron density nD to triton density nT, and velocity distribution of confined α particles.


Keywords

DEMO, plasma diagnostics, neutron energy spectrometry

DOI: 10.1585/pfr.7.2405053


References

  • [1] A. Sagara et al., International Symposium on Fusion Nuclear Technology (ISFNT-10), 11-16 September 2011, Portrand, US. O38.
  • [2] ITER Physics Expert Group on Diagnostics, Nucl. Fusion 39, 2541 (1999).
  • [3] A.J.H. Donné et al., Nucl. Fusion 47, S337 (2007).
  • [4] M. Sasao, Tran. Fusion Sci. Technol. 51, 40 (2007).
  • [5] K.M. Young, Fusion Sci. Technol. 53, 281 (2008).
  • [6] K.M. Young, Fusion Sci. Technol. 57, 298 (2010).
  • [7] H. Yamada, Nucl. Fusion 51, 094021 (2011).
  • [8] T. Iida, Radiation 17, 57 (1991) (in Japanese).
  • [9] T. Nishitani et al., JAERI-Research 98-053 (1998).
  • [10] T. Nishitani et al., JAERI-Research 2002-007 (2002).
  • [11] G. Vayakis et al., Fusion Sci. Technol. 53, 699 (2008).
  • [12] T. Tanaka et al., Nucl. Fusion 48, 035005 (2008).
  • [13] J.F. Briesmester, Los Alamos National Laboratory Report LA-12625-M.
  • [14] O.N. Jarvis, Plasma Phys. Control. Fusion 36, 209 (1994).
  • [15] A. Murari et al., Rev. Sci. Instrum. 81, 10E136 (2010).
  • [16] V.G. Kiptily et al., Nucl. Fusion 42, 999 (2002).
  • [17] Y. Endo et al., IEEE Tans. Nucl. Sci. NS-29, 714 (1982).
  • [18] H. Abe et al., J. At. Energy Soc. Jpn. 37, 628 (1995) (in Japanese).
  • [19] V.G. Kiptly et al., Plasma Phys. Control. Fusion 48, R59 (2006).
  • [20] H. Brysk, Plasma Physics 15, 611 (1973).
  • [21] J. Scheffel, Nucl. Instrum. Methods 224, 519 (1984).
  • [22] H. Tomita et al., Rev. Sci. Instrum. 81, 10D309 (2010).
  • [23] U. Feldman, P. Indelicato and J. Sugar, J. Opt. Soc. Am. B8, 3 (1991)
  • [24] P. Indelicato, Phys. Scr. T65, 57 (1996).
  • [25] H.A. Sakaue et al., J. Vac. Soc. Jpn. 48, 483 (1995).
  • [26] H. Watanabe et al., Phys. Rev. A 63, 042513 (2001).
  • [27] A. Komatsu et al., Phys. Scr. T144, 014012 (2011).
  • [28] K. Okada et al., Rev. Sci. Instrum. 77, 10E726 (2006).
  • [29] K. Okada et al., J. Plasma Fusion Res. SERIES 8, 666 (2009).
  • [30] C.H. Skinner et al., PPPL-2878 (1993).
  • [31] J. Källne and G. Gorini, Fusion Technol. 25, 341 (1994).
  • [32] R.K. Fisher et al., Nucl. Fusion 34, 1291 (1994).
  • [33] T. Akiyama et al., Plasma Fusion Res. 7, 2402013 (2012).

This paper may be cited as follows:

Mitsutaka ISOBE, Tsuyoshi AKIYAMA, Tokihiko TOKUZAWA, Teruya TANAKA, Daiji KATO, Hiroyuki A. SAKAUE, Takuya GOTO, Junichi MIYAZAWA, Akio SAGARA and the FFHR Design Group, Plasma Fusion Res. 7, 2405053 (2012).