[Table of Contents]

Plasma and Fusion Research

Volume 7, 2403128 (2012)

Regular Articles


Collisional-Radiative Modeling of W27+
Xiaobin DING, Izumi MURAKAMI, Daiji KATO, Hiroyuki A. SAKAUE, Fumihiro KOIKE1) and Chenzhong DONG2)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
1)
School of Medicine, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
2)
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
(Received 9 December 2011 / Accepted 10 July 2012 / Published 13 September 2012)

Abstract

A detailed collisional radiative model of W27+ ions was constructed based on the atomic data calculated by relativistic atomic properties software Flexible Atomic Code. The strong electric dipole (E1) transitions mainly comes from the 4f → 4d transition in W27+ ions with wavelength falls into VUV region (4.6 - 5.1 nm), while the wavelength of magnetic dipole (M1) transition among the fine structures of the first excited states falls into the visible optical region. Synthetic spectra in both regions are given theoretically with plasma condition in EBIT for experiment reference. Finally, the dependence of the intensity ratio on the electron density is provided as a potential diagnostic tool of Maxwellian plasmas.


Keywords

tungsten, plasma diagnosis, collisional radiative modeling

DOI: 10.1585/pfr.7.2403128


References

  • [1] J. Reader, Phys. Scr. T134, 014023 (2009).
  • [2] R. Radtke, C. Biedermann, J.L. Schwob et al., Phys. Rev. A 64, 012720 (2001).
  • [3] R. Radtke, C. Biedermann, P. Mandelbaum et al., J. Phys.: Conf. Ser. 58, 113 (2007).
  • [4] C. Biedermann and R. Radtke, AIP Conf. Proc. 1161, 95 (2009).
  • [5] C. Biedermann, R. Radtke, R. Seidel et al., J. Phys.: Conf. Ser. 163, 012034 (2009).
  • [6] C. Biedermann, R. Radtke, R. Seidel et al., Phys. Scr. T134, 014026 (2009).
  • [7] T. Nakano, N. Asakura, H. Kubo et al. Nucl. Fusion 49, 115024 (2009).
  • [8] J. Clementson, P. Beiersdorfer, G.V. Brown et al., Phys. Scr. 81, 015301 (2010).
  • [9] J. Clementson, P. Beiersdorfer, E.W. Magee et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144009 (2010).
  • [10] C.S. Harte, C. Suzuki, T. Kato et al., J. Phys. B: At. Mol. Opt. Phys. 43, 205004 (2010).
  • [11] Y. Ralchenko, I.N. Draganić, D. Osin et al., Phys. Rev. A 83, 032517 (2011).
  • [12] J. Yanagibayashi, T. Nakano, A. Iwamae et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144013 (2010).
  • [13] J. Yanagibayashi, T. Nakano, A. Iwamae et al., Nucl. Instrum. Methods A 623, 741 (2010).
  • [14] J. Abdallah Jr, J. Colgan, R.E.H. Clark et al., J. Phys. B: At. Mol. Opt. Phys. 44, 075701 (2011).
  • [15] A. Komatsu, J. Sakoda, N. Nakamura et al., Phys. Scr. 2011, 014012 (2011).
  • [16] X.B. Ding, F. Koike, I. Murakami et al., J. Phys. B: At. Mol. Opt. Phys. 44, 145004 (2011).
  • [17] M.F. Gu, Can. J. Phys. 86, 675 (2008).
  • [18] X.B. Ding, F. Koike, I. Murakami et al., J. Phys. B: At. Mol. Opt. Phys. 45, 035003 (2012).
  • [19] H. Watanabe, N. Nakamura, D. Kato et al., Can. J. Phys. 90, 497 (2012).

This paper may be cited as follows:

Xiaobin DING, Izumi MURAKAMI, Daiji KATO, Hiroyuki A. SAKAUE, Fumihiro KOIKE and Chenzhong DONG, Plasma Fusion Res. 7, 2403128 (2012).