[Table of Contents]

Plasma and Fusion Research

Volume 7, 2401146 (2012)

Regular Articles

Configuration of Flows in a Cylindrical Plasma Device
Stella OLDENBÜRGER1), Kazuya URIU2), Tatsuya KOBAYASHI2), Shigeru INAGAKI1,3), Makoto SASAKI1,3), Yoshihiko NAGASHIMA1,4), Takuma YAMADA1,4), Akihide FUJISAWA1,3), Sanae-I. ITOH1,3) and Kimitaka ITOH1,2,5)
Itoh Research Center for Plasma Turbulence, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 8 December 2011 / Accepted 28 May 2012 / Published 15 October 2012)


Ion flow is studied in the cylindrical magnetized Argon plasma of the PANTA device using several experimental methods. Time delay estimation technique (TDE) is used to measure the azimuthal propagation of density fluctuations between two electrostatic probes. Ion flux is also studied in azimuthal and axial direction using a newly installed Mach probe. TDE shows velocity profiles qualitatively consistent with expected drift wave propagation and E × B rotation. The Mach probe shows a maximum azimuthal flow and an axial flow shear close to the maximum density gradient and maximum fluctuation position. Striking differences exist in the detected axial ion flows depending on the discharge parameters. In high neutral pressure conditions reversal of axial ion flow was detected in the outer part of the plasma column. Temporal evolution of flows and fluctuations are compared as a first step to assess interplay between plasma turbulence and flows in the radial, axial and azimuthal directions.


linear magnetized plasma, cross-field flux, ion flow, Mach probe, time delay estimation

DOI: 10.1585/pfr.7.2401146


  • [1] J.S. Chiu, M.D. Tinkle and A.K. Sen, Phys. Rev. E 54 (2), 2158 (1996).
  • [2] D. Block and A. Piel, Plasma Phys. Control. Fusion 45, 413 (2003).
  • [3] T. Klinger, F. Greiner, A. Rohde and A. Piel, Phys. Plasmas 2 (6), 1822 (1995).
  • [4] T. Windisch, O. Grulke and T. Klinger, J. Nucl. Mater. 390-391, 395 (2009).
  • [5] G.R. Tynan et al., J. Nucl. Mater. 196-198, 770 (1992).
  • [6] H. Arakawa et al., Plasma Phys. Control. Fusion 52, 105009 (2010).
  • [7] K. Kawashima et al., Plasma Fusion Res. 6, 2406118 (2011).
  • [8] I.H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, 2002) p. 82.
  • [9] I.H. Hutchinson, Phys. Plasmas 9, 1832 (2002).
  • [10] M. Hudis and L.M. Lidsky, J. Appl. Phys. 41, 5011 (1970).
  • [11] S. Kado, T. Shikama, S. Kajita, T. Oishi and S. Tanaka, Contrib. Plasma Phys. 44, 656 (2004).
  • [12] Y.-S. Choi, K.-S. Chung, H.-J. Woo, M.-J. Lee and T. Lho, J. Phys. D: Appl. Phys. 42, 225205 (2009).
  • [13] K.-S. Chung et al., JSPF, JPS and Japan Society of Applied Physics, PLASMA Conference 2011, talk 25B07 (2011).
  • [14] J.H. Yu, C. Holland, G.R. Tynan, G. Antar and Z. Yan, J. Nucl. Mater. 363-365, 728 (2007).
  • [15] Y. Saitou et al., Phys. Plasmas 14, 072301 (2007).
  • [16] O.F. Castellanos, E. Anabitarte, J.M. Sentìes, C. Hidalgo and M.A. Pedrosa, Plasma Phys. Control. Fusion 47, 2067 (2005).

This paper may be cited as follows:

Stella OLDENBÜRGER, Kazuya URIU, Tatsuya KOBAYASHI, Shigeru INAGAKI, Makoto SASAKI, Yoshihiko NAGASHIMA, Takuma YAMADA, Akihide FUJISAWA, Sanae-I. ITOH and Kimitaka ITOH, Plasma Fusion Res. 7, 2401146 (2012).