Plasma and Fusion Research
Volume 7, 2401062 (2012)
Regular Articles
- Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
- 1)
- National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
Abstract
Charge-transfer cross sections of the ground state He+ ions in collisions with He atoms and simple molecules (H2, D2, N2, CO and CO2) have been measured in the energy range of 0.20 to 4.0 keV with the initial growth rate method. Since previously published experimental data are scattered in the low energy region, the present observations would provide reasonably reliable cross section data below 4 keV. The charge transfer accompanied by dissociation of product molecular ion can be dominant at low energies for molecular targets. In He+ + D2 collisions, any isotope effect was not observed over the present energy range, compared to H2 molecule.
Keywords
charge-transfer cross section, slow He+ ion, He atom, simple molecule, growth rate method, dissociative charge transfer, edge plasma
Full Text
References
- [1] I. Yoshikawa et al., J. Geophys. Res. 106, 26057 (2001).
- [2] C.M. Lisse et al., Science 274, 205(1996).
- [3] R.K. Janev, Atomic and Molecular Processes in Fusion Edge Plasmas (Plenum, New York, 1995) p.1.
- [4] J.B.H. Stedeford and F.B. Hasted, Proc. Roy. Soc. A227, 466 (1955).
- [5] T. Kusakabe et al., J. Phys. Soc. Jpn. 59, 1987 (1990).
- [6] T. Kusakabe et al., Phys. Rev. A 62, 062714 (2000).
- [7] A.A. Radzig and B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985).
- [8] B.L. Moiseiwitsch, Proc. Phys. Soc. (London) A69, 653 (1956).
- [9] W.H. Cramer and J.H. Simons, J. Chem. Phys. 26, 1272 (1957).
- [10] H.C. Hayden and N.G. Utterback, Phys. Rev. 135A, 1575 (1964).
- [11] V.A. Belyaev et al., Sov. Phys. JETP 27, 924 (1968).
- [12] W.N. Shelton and P.A. Stoycheff, Phys. Rev. A 3, 613 (1973).
- [13] K. Kadota and Y. Kaneko, Jpn. J. Appl. Phys. 13, 1554 (1971).
- [14] F.L. Eisele and S.W. Nagy, J. Chem. Phys. 65, 752 (1976).
- [15] H. Hanaki et al., Jpn. J. Appl. Phys. 22, 748 (1983).
- [16] M.E. Rudd et al., Phys. Rev. A 32, 829 (1985).
- [17] D. Rapp and W.E. Francis, J. Chem. Phys. 37, 2631 (1962).
- [18] D.P. Hodgkinson and J.S. Briggs, J. Phys. B: At. Mol. Phys. 9, 255 (1976).
- [19] T. Kusakabe et al., Phys. Rev. A 70, 052710 (2004); M.W. Gealy and B. Van Zyl, Phys. Rev. A 36, 3091 (1987).
- [20] C.F. Barnett and P.H. Stier, Phys. Rev. 109, 385 (1958).
- [21] F.J. DeHeer et al., Physica 32, 1793 (1966).
- [22] R.W. Rozett and W.S. Koski, J. Chem. Phys. 48, 533 (1968).
- [23] H.B. Gilbody et al., J. Phys. B 4, 800 (1971).
- [24] T.F. Moran and R.J. Conrads, J. Chem. Phys. 58, 3793 (1973).
- [25] R.E. Olson et al., Phys. Rev. A 16, 1867 (1977).
- [26] R.S. Gao et al., Phys. Rev. A 41, 5929 (1990).
- [27] R.K. Janev et al., Elementary Processes in Hydrogen - Helium Plamas (Springer, Berlin, 1987) p.184.
- [28] R.F. Stebbings et al., J. Chem. Phys. 39, 968 (1963).
- [29] D.W. Koopman, Phys. Rev. 166, 57 (1968).
- [30] P. Mahadevan and G.D. Magnuson, Phys. Rev. 171, 103 (1968).
- [31] H. Schlumbohm, Z. Natureforsch. 24a, 1720 (1969).
- [32] G.J. Lockwood, Phys. Rev. A 2, 1406 (1970).
- [33] D.L. Smith and L. Kevan, J. Am. Chem. Soc. 93, 2113 (1971).
- [34] M.A. Coplan and K.W. Ogilvie, J. Chem. Phys. 61, 2010 (1974).
- [35] J.B. Greenwood et al., Astrophys. J. 529, 605 (2000).
This paper may be cited as follows:
Toshio KUSAKABE, Satoshi KITAMURO, Yohta NAKAI, Hiroyuki TAWARA and Mamiko SASAO, Plasma Fusion Res. 7, 2401062 (2012).