Plasma and Fusion Research

Volume 6, 2406027 (2011)

Regular Articles


Integrated Visualization of Simulation Results and Experimental Devices in Virtual-Reality Space
Hiroaki OHTANI1,2), Akira KAGEYAMA3), Yuichi TAMURA4), Seiji ISHIGURO1,2) and Mamoru SHOHJI1)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies (SOKENDAI), Toki 509-5292, Japan
3)
Kobe University, Kobe 657-8501, Japan
4)
Konan University, Kobe 658-8501, Japan
(Received 7 December 2010 / Accepted 31 January 2011 / Published 1 July 2011)

Abstract

We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research.


Keywords

virtual reality, CAVE system, simulation data analysis, experimental device data

DOI: 10.1585/pfr.6.2406027


References

  • [1] C. Cruz-Neira, D.J. Sandin and T.A. DeFanti, Proc. SIGGRAPH'93, 135 (1993).
  • [2] A. Kageyama, Y. Tamura and T. Sato, Prog. Theor. Phys. Suppl. 138, 665 (2000).
  • [3] N. Ohno and A. Kageyama, Phys. Earth Planet. Inter. 163, 305 (2007).
  • [4] H. Ohtani, N. Ohno, N. Mizuguchi, M. Shoji and S. Ishiguro, Plasma Fusion Res. 5, 305 (2010).
  • [5] Y. Tamura, A. Kageyama, T. Sato, S. Fujiwara and H. Nakamura, Comput. Phys. Commun. 142, 227 (2001).
  • [6] N. Mizuguchi, Y. Tamura and A. Sagara, Fusion Eng. Des. 81, 2755 (2006).
  • [7] J. Li, T. Sato, A. Kageyama, Science 295, 1887 (2002).
  • [8] N. Mizuguchi, T. Hayashi and T. Sato, Phys. Plasmas 7, 940 (2000).
  • [9] A. Ito, Y. Wang, S. Irle, K. Morokuma and H. Nakamura, J. Nucl. Mater. 390-391, 183 (2009).
  • [10] H. Ohtani and R. Horiuchi, Plasma Fusion Res. 3, 054 (2008).
  • [11] A. Kageyama, T. Hayashi, R. Horiuchi, K. Watanabe and T. Sato, Proc. ICNSP, 138 (1998).
  • [12] K. Harafuji, T. Hayashi and T. Sato, J. Comput. Phys. 81, 169 (1989).

This paper may be cited as follows:

Hiroaki OHTANI, Akira KAGEYAMA, Yuichi TAMURA, Seiji ISHIGURO and Mamoru SHOHJI, Plasma Fusion Res. 6, 2406027 (2011).