Plasma and Fusion Research

Volume 6, 2404057 (2011)

Regular Articles


Collisionless Shock Wave Generation in Counter-Streaming Plasmas Using Gekko XII HIPER Laser
Takao IDE, Youichi SAKAWA1), Yasuhiro KURAMITSU1), Taichi MORITA2), Hiroki TANJI, Kento NISHIO2), Tsunehiko KATO1), Naofumi OHNISHI3), Christopher D. GREGORY4), Nigel WOOLSEY4), Alexandra DIZIERE5), Michel KOENIG5), Shoujun WANG6), Quanli DONG6), Yutong LI6) and Hideaki TAKABE1)
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
1)
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita 565-0871, Japan
2)
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
3)
Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
4)
Department of Physics, University of York, Heslington, York, YO10 5DD, UK
5)
LULI Ecole polytechnique, 91128 Palaiseau Cedex, France
6)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
(Received 22 December 2010 / Accepted 11 March 2011 / Published 1 July 2011)

Abstract

Collisionless shock wave generation in counter-streaming plasmas for several target materials (Al, C, Cu, and Pb) is investigated using a high-power laser system. Counter-streaming plasmas are produced by irradiating an inner surface of a double-plane target. For Al, C, and Pb, a shock wave is observed in self-emission measurements similar to the previous experiment using a CH target [Y. Kuramitsu et al., J. Phys.: Conf. Series. 24, 042008 (2010)], and the width of the transition region is much shorter than the ion-ion collision mean-free-paths. The mean-free-paths tend to be longer for heavier materials, because the ionization degrees Z are not so different among these materials.


Keywords

colissionless shock, laser plasma, laboratory astrophysics

DOI: 10.1585/pfr.6.2404057


References

  • [1] F.A. Aharonian et al., Nature (London) 432, 75 (2004).
  • [2] Y. Uchiyama et al., Nature (London) 449, 576 (2007).
  • [3] R.J. Taylor et al., Phys. Rev. Lett. 24, 206 (1970).
  • [4] H. Ikezi et al., Phys. Fluids 16, 2167 (1973).
  • [5] H. Ikezi et al., Phys. Rev. Lett. 36, 794 (1976).
  • [6] A.R. Bell et al., Phys. Rev. A 38, 1363 (1988).
  • [7] C. Coutois et al., Phys. Plasmas 11, 3386 (2004).
  • [8] N.C. Woolsey et al., Plasma Phys. Control. Fusion 46, B397 (2004).
  • [9] Y. Kuramitsu et al., Journal of Physics: Conference Series 244, 042008 (2010).
  • [10] T. Morita et al., Phys. Plasmas 17, 122702 (2010).
  • [11] L. Romagnani et al., Phys. Rev. Lett. 101, 025004 (2008).
  • [12] P.M. Nilson, et al., Phys. Rev. Lett. 103, 255001 (2009).
  • [13] G. Sorasio, et al., Phys. Rev. Lett. 96, 045005 (2006).
  • [14] L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience Publishers, New York, 1959).

This paper may be cited as follows:

Takao IDE, Youichi SAKAWA, Yasuhiro KURAMITSU, Taichi MORITA, Hiroki TANJI, Kento NISHIO, Tsunehiko KATO, Naofumi OHNISHI, Christopher D. GREGORY, Nigel WOOLSEY, Alexandra DIZIERE, Michel KOENIG, Shoujun WANG, Quanli DONG, Yutong LI and Hideaki TAKABE, Plasma Fusion Res. 6, 2404057 (2011).