Plasma and Fusion Research
Volume 6, 2106042 (2011)
Review Articles
- 1)
- University of California at Davis, Davis, CA 95616
- 2)
- Princeton Plasma Physics Laboratory, Princeton, NJ 08543
- 3)
- University of Science and Technology of China, Hefei, China
- 4)
- POSTECH, Pohang, Gyeongbuk 790-784, Korea
- 5)
- FOM-Institute for Plasma Physics Rijnhuizen, 3430 BE Nieuwegein, The Netherlands
- 6)
- Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- 7)
- General Atomics, San Diego, CA 92121
- 8)
- National Institute for Fusion Science, Toki, Gifu 509-5252, Japan
- 9)
- Tokyo Institute of Technology, Tokyo, Japan
- 10)
- Kansai University, Osaka, Japan
- 11)
- Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
- 12)
- Kyushu University, Fukuoka 812-8581, Japan
- 13)
- University of Colorado, Boulder, CO 80309
Abstract
Techniques for visualizing turbulent flow in nature and in the laboratory have evolved over half a millennium from Leonardo da Vinci's sketches of cascading waterfalls to the advanced imaging technologies which are now pervasive in our daily lives. Advancements in millimeter wave imaging have served to usher in a new era in plasma diagnostics, characterized by ever improving 2D, and even 3D, images of complex phenomena in tokamak and stellarator plasmas. Examples at the forefront of this revolution are electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR). ECEI has proved to be a powerful tool as it has provided immediate physics results following successful diagnostic installations on TEXTOR, ASDEX-U, DIII-D, and KSTAR. Recent results from the MIR system on LHD are demonstrating that this technique has the potential for comparable impact in the diagnosis of electron density fluctuations. This has motivated a recent resurgence in MIR research and development, building on a prototype system demonstrated on TEXTOR, toward the realization of combined ECEI/MIR systems on DIII-D and KSTAR for simultaneous imaging of electron temperature and density fluctuations. The systems discussed raise the standard for fusion plasma diagnostics and present a powerful new capability for the validation of theoretical models and numerical simulations.
Keywords
plasma diagnostics, millimeter-wave imaging, electron cyclotron emission, reflectometry, electron temperature fluctuation, electron density fluctuation
Full Text
References
- [1] T. Munsat et al., Rev. Sci. Instrum. 74, 1426 (2003).
- [2] H. Park et al., Rev. Sci. Instrum. 75, 3787 (2004).
- [3] B. Tobias et al., Rev. Sci. Instrum. 80, 093502 (2009).
- [4] B. Tobias et al., Rev. Sci. Instrum. 81, 10D928 (2010).
- [5] G. S. Yun et al., Rev. Sci. Instrum. 81, 10D930 (2010).
- [6] H. K. Park et al., Phys. Rev. Lett. 96, 195004 (2006).
- [7] H. K. Park et al., Phys. Rev. Lett. 96, 195003 (2006).
- [8] H. K. Park et al., in 23rd IAEA Fusion Energy Conference (Nuclear Fusion, Daejon, Korea Rep. of, 2010).
- [9] I. G. J. Classen et al., Rev. Sci. Instrum. 81, 10D929 (2010).
- [10] B. Tobias et al., Phys. Rev. Lett. 106, 075003 (2011).
- [11] E. Mazzucato et al., Phys. Plasmas 9, 1955 (2002).
- [12] H. K. Park et al., Rev. Sci. Instrum. 81, 10D933 (2010).
- [13] E. J. Valeo, G. J. Kramer and R. Nazikian, Plasma Phys. Control. Fusion 44, L1 (2002).
- [14] B. Tobias et al., Contributions to Plasma Phys. 51, 2-3, 111 (2011).
- [15] L. Lei et al., Rev. Sci. Instrum. 81, 10D904 (2010).
- [16] T. Munsat et al., Appl. Optics 49, E20 (2010).
- [17] X. Kong, C. W. Domier and J. N. C. Luhmann, Rev. Sci. Instrum. 81, 10D923 (2010).
- [18] P. Zhang et al., Rev. Sci. Instrum. 79, 10F103 (2008).
- [19] C. W. Domier et al., Rev. Sci. Instrum. 77, 10E924 (2006).
- [20] B. Tobias et al., Phys. Plasmas 18, 056107 (2011).
- [21] C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987).
- [22] D. A. Spong, B. A. Carreras and C. L. Hedrick, Phys. Fluids B-Plasma 4, 3316 (1992).
- [23] P. H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
- [24] A. Kramer-Flecken et al., Phys. Rev. Lett. 97, 045006 (2006).
- [25] S. Yamaguchi et al., Rev. Sci. Instrum. 79, 10F111 (2008).
- [26] T. Yoshinaga et al., Rev. Sci. Instrum. 81, 10D915 (2010).
- [27] D. Kuwahara et al., Rev. Sci. Instrum. 81, 10D919 (2010).
- [28] R. Nazikian, G. J. Kramer and E. Valeo, Phys. Plasmas 8, 1840 (2001).
- [29] G. J. Kramer, R. Nazikian and E. J. Valeo, Plasma Phys. Control. Fusion 46, 695 (2004).
- [30] T. Munsat et al., Plasma Phys. Control. Fusion 45, 469 (2003).
- [31] W. Lee et al., Plasma Fusion Res. 6, 2402037 (2011).
- [32] A. J. Wootton et al., Plasma Phys. Control. Fusion 30, 1479 (1988).
- [33] A. E. White et al., Phys. Plasmas 15, 056116 (2008).
- [34] A. E. White et al., Phys. Plasmas 17, 020701 (2010).
- [35] G. McKee et al., Rev. Sci. Instrum. 70, 2179 (1999).
- [36] A. E. White et al., Rev. Sci. Instrum. 79, 103505 (2008).
- [37] F. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New York, 1984), p. v. <1>.
This paper may be cited as follows:
Benjamin TOBIAS, Neville C. LUHMANN, Jr., Calvin W. DOMIER, Xiangyu KONG, Tianran LIANG, Shao CHE, Raffi NAZIKIAN, Luo CHEN, Gunsu YUN, Woochang LEE, Hyeon K. PARK, Ivo G.J. CLASSEN, Jurrian E. BOOM, Anthony J.H. DONNÉ, Michael A. Van ZEELAND, Réjean BOIVIN, Yoshio NAGAYAMA, Tomokazu YOSHINAGA, Daisuke KUWAHARA, Soichiro YAMAGUCHI, Yuichiro KOGI, Atsushi MASE and Tobin L. MUNSAT, Plasma Fusion Res. 6, 2106042 (2011).