[Table of Contents]

Plasma and Fusion Research

Volume 5, S1011 (2010)

Regular Articles


From Wendelstein 7-X to a Stellarator Reactor
Robert C. WOLF, Craig D. BEIDLER, Rainer BURHENN, Joachim GEIGER, Matthias HIRSCH, Johann KISSLINGER, Henning MAAßBERG, Arthur WELLER, Andreas WERNER and the Wendelstein 7-X Team
Max-Planck-Institut für Plasmaphysik, IPP-EURATOM Association, D-17491 Greifswald, Germany
(Received 9 January 2009 / Accepted 2 August 2009 / Published 26 March 2010)

Abstract

Wendelstein 7-X is a drift-optimized stellarator with improved thermal and fast ion confinement. Additional optimization criteria are a stiff equilibrium configuration and MHD stability up to a volume averaged β of 5 %. The main objectives are to demonstrate reactor-relevant plasma performance under steady-state conditions including power and particle exhaust with an island divertor. To that effect Wendelstein 7-X has superconducting coils with a maximum average magnetic field of 3 T and will be equipped with actively cooled plasma facing components for heat fluxes of up to 10 MW/m2. Besides fulfilling this research mission, the extrapolation from Wendelstein 7-X to a stellarator reactor is an important issue. The capability of such an extrapolation will depend also on the results from other stellarators, on the ITER results and here in particular the experience gained with α-particle heating and operating a nuclear device, and the advancement of first-principle theory required for the extrapolation.


Keywords

Wendelstein 7-X, stellarator optimization, HELIAS, steady-state operation

DOI: 10.1585/pfr.5.S1011


References

  • [1] G. Grieger et al., Phys. Fluids B4, 2081 (1992).
  • [2] M. Hirsch et al., Plasma Phys. Control. Fusion 50, 053001 (2008).
  • [3] V. V. Nemov, S. V. Kasilov, W. Kernbichler and M. F. Heyn, Phys. Plasmas 6, 4622 (1999).
  • [4] M. Thumm et al., Proc. 18th Int. Toki Conf.
  • [5] H. Wobig, Plasma Phys. Control. Fusion 41, A159 (1999).
  • [6] C. D. Beidler et al., Nucl. Fusion 41, 1759 (2001).
  • [7] A. Dinklage et al., Fusion Sci. Technol. 51, 1 (2007).
  • [8] Yu. Igitkhanov et al., Fusion Eng. Des. 81, 2695 (2006).
  • [9] J. Pamela, private communication.
  • [10] M. J. Mantsinen et al., Phys. Rev. Lett. 88, 105002 (2002).
  • [11] P. R. Thomas et al., Phys. Rev. Lett. 80, 5548 (1998).
  • [12] E. Strumberger, Nucl. Fusion 40, 1697 (2000).
  • [13] T. Andreeva. J. Kisslinger and H. Wobig, Problems of Atomic Science and Technology 2002, No.4, Series: Plasma Physics (7), P. 45-47.
  • [14] W. Lotz et al., Plasma Phys. Control Fusion 34, 1037 (1992).
  • [15] T. Morisaki et al., Phys. Plasmas 14, 056113 (2007).
  • [16] M. Greenwald, Plasma Phys. Control. Fusion 44, R27 (2002).
  • [17] A. Reiman et al., Nucl. Fusion 47, 572 (2007).
  • [18] M. Kaufmann and R. Neu, Fusion Eng. Des. 82, 521 (2007).
  • [19] H. Maaßberg, C. D. Beidler, E. E. Simmet, Plasma Phys. Control. Fusion 41, 1135 (1999).
  • [20] K. McCormick et al., Phys. Rev. Lett. 89, 015001 (2002).
  • [21] Y. Feng et al., Nucl. Fusion 46, 807 (2006).
  • [22] R. Neu, J. Nucl. Mater. 363-365, 52 (2007).
  • [23] R. Stadler et al., Proc. 18th Int. Toki Conf.
  • [24] K.-H. Finken et al., Phys. Rev. Lett. 94, 015003 (2005).
  • [25] H. E. Mynick and A. H. Boozer, Proc. 17th Int. Toki Conf.
  • [26] H. Sugama, T.-H. Watanabe and S. Ferrando-Margalet, Proc. 17th Int. Toki Conf.
  • [27] F. Jenko et al., Proc. 18th Int. Toki Conf.
  • [28] R. Burhenn et al., Nucl. Fusion 49, 065005 (2009).
  • [29] A. A. Subbotin et al., Nucl. Fusion 46, 921 (2006).

This paper may be cited as follows:

Robert C. WOLF, Craig D. BEIDLER, Rainer BURHENN, Joachim GEIGER, Matthias HIRSCH, Johann KISSLINGER, Henning MAAßBERG, Arthur WELLER, Andreas WERNER and the Wendelstein 7-X Team, Plasma Fusion Res. 5, S1011 (2010).