Plasma and Fusion Research
Volume 4, 052 (2009)
Regular Articles
- Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
Abstract
An array of microplasmas with sizes ranging from a millimeter to a micrometer, has potential for novel and promising electromagnetic-wave media, especially when the wave frequency is below the electron plasma frequency. Photonic crystals or band-gap materials composed of microplasmas have unique properties arising from their loss term, and they can become band-pass filters instead of the band-stop filters usually observed in photonic crystals of dielectrics. Such behavior is well understood using the dispersion relation in a three-dimensional space of frequency and complex wavenumber with real and imaginary parts. Another functional array is a simple one-dimensional (1D) array; it can conduct microwaves for a wide frequency range below the electron plasma frequency. The propagating modes are similar to the coupling of localized surface plasmon polaritons observed along a metallic nanoparticle chain in the photon range; however a 1D microplasma array features differ from those of a metallic sphere array, leading to a dynamic wide-band waveguide.
Keywords
microplasma, electromagnetic waves, photonic crystal, surface wave, localized surface plasmon polariton
Full Text
References
- [1] T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962).
- [2] V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon Press, Oxford, 1964).
- [3] E. Yablonovitch, Science 289, 557 (2000).
- [4] S. Noda and T. Baba, ed., Roadmap on Photonic Crystals (Kluwer Academic Publishing, Boston, 2003).
- [5] J. Faith, S.P. Kuo and J. Huang, Phys. Rev. E 55, 1843 (1997).
- [6] D.K. Kalluri, Electromagnetics of Complex Media (CRC Press, Boca Raton, 1998).
- [7] H. Hojo and A. Mase, J. Plasma Fusion Res 80, 89 (2004).
- [8] O. Sakai, T. Sakaguchi and K. Tachibana, Appl. Phys. Lett. 87, 241505 (2005).
- [9] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, Plasma Phys. Control. Fusion 47, B617 (2005).
- [10] O. Sakai, T. Sakaguchi and K. Tachibana, J. Appl. Phys. 101, 073304 (2007).
- [11] T. Sakaguchi, O. Sakai and K. Tachibana, J. Appl. Phys. 101, 073305 (2007).
- [12] O. Sakai and K. Tachibana, IEEE Trans. Plasma Sci. 35, 1267 (2007).
- [13] O. Sakai, T. Sakaguchi, T. Naito, D.-S. Lee and K. Tachibana, Plasma Phys. Control. Fusion 49, B453 (2007).
- [14] T. Naito, O. Sakai and K. Tachibana, Appl. Phys. Express 1, 066003 (2008).
- [15] J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner and F.R. Aussenegg, Phys. Rev. Lett. 82, 2590 (1999).
- [16] M.L. Brongersma, J.W. Hartman and H.A. Atwater, Phys. Rev. B 62, R16356 (2000).
- [17] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, E., B.E. Koel and A.A. Requicha, Nature Mat. 2, 229 (2003).
- [18] A.W. Trivelpiece and R.W. Gould, J. Appl. Phys. 30, 1784 (1959).
- [19] J.C. Nickel, J.V. Parker and R.W. Gould, Phys. Rev. Lett. 11, 183 (1963).
- [20] J.V. Parker, J.C. Nickel and R.W. Gould, Phys. Fluids 7, 1489 (1964).
- [21] H.C. Hoh, Phys. Rev. 133, A1016 (1964).
- [22] D.J. Cooperberg, Phys. Plasmas 5, 862 (1998).
- [23] Y. Yasaka and H. Hojo, Phys. Plasmas 7, 1601 (2000).
- [24] I.P. Ganachev and H. Sugai, Surf. Coat. Technol. 200, 792 (2005).
- [25] K.C. Huang, E. Lidorikis, X. Jiang, J.D. Jannopoulos, K.A. Nelson, P. Bienstman and S. Fan, Phys. Rev. B 69, 195111 (2004).
- [26] T. Ito and K. Sakoda, Phys. Rev. B 64, 045117 (2001).
- [27] F. Forstmann and R.R. Gerhardts, Metal Optics Near the Plasma Frequency (Springer-Verlag, Berlin, 1986).
- [28] A. Eguiluz and J.J. Quinn, Phys. Rev. B 14, 1347 (1976).
- [29] J.E. Sipe, Surf. Sci. 84, 75 (1979).
- [30] C. Schwartz and W.L. Schaich, Phys. Rev. B 26, 7008 (1982).
- [31] J.M. Pitarke, V.M. Silkin, E.V. Chulkov and P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007).
- [32] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, New York, 1994).
This paper may be cited as follows:
Osamu SAKAI, Teruki NAITO and Kunihide TACHIBANA, Plasma Fusion Res. 4, 052 (2009).